Systole et rayon interne des variétés hyperboliques non compactes
Geometry & topology, Tome 19 (2015) no. 4, pp. 2039-2080.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Nous contrôlons deux invariants globaux des variétés hyperboliques à bouts cuspidaux : la longueur de la plus courte géodésique fermée (la systole), et le rayon de la plus grande boule plongée (le rayon maximal). Nous majorons la systole en fonction de la dimension et du volume simplicial. Nous minorons le rayon maximal par une constante positive indépendante de la dimension. Ces bornes sont optimales en dimension 3. Cela donne une nouvelle caractérisation de la variété de Gieseking.

We bound two global invariants of cusped hyperbolic manifolds: the length of the shortest closed geodesic (the systole), and the radius of the biggest embedded ball (the inradius). We give an upper bound for the systole, expressed in terms of the dimension and simplicial volume. We find a positive lower bound on the inradius independent of the dimension. These bounds are sharp in dimension 3, realized by the Gieseking manifold. They provide a new characterization of this manifold.

DOI : 10.2140/gt.2015.19.2039
Classification : 57M50, 30F45
Keywords: hyperbolic manifolds, cusps, systole, inradius, injectivity radius

Gendulphe, Matthieu 1

1 Département de Mathématiques, Université de Fribourg, Chemin du Musée 23, CH-1700 Fribourg Pérolles, Switzerland
@article{GT_2015_19_4_a3,
     author = {Gendulphe, Matthieu},
     title = {Systole et rayon interne des vari\'et\'es hyperboliques non compactes},
     journal = {Geometry & topology},
     pages = {2039--2080},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2015},
     doi = {10.2140/gt.2015.19.2039},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2039/}
}
TY  - JOUR
AU  - Gendulphe, Matthieu
TI  - Systole et rayon interne des variétés hyperboliques non compactes
JO  - Geometry & topology
PY  - 2015
SP  - 2039
EP  - 2080
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2039/
DO  - 10.2140/gt.2015.19.2039
ID  - GT_2015_19_4_a3
ER  - 
%0 Journal Article
%A Gendulphe, Matthieu
%T Systole et rayon interne des variétés hyperboliques non compactes
%J Geometry & topology
%D 2015
%P 2039-2080
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2039/
%R 10.2140/gt.2015.19.2039
%F GT_2015_19_4_a3
Gendulphe, Matthieu. Systole et rayon interne des variétés hyperboliques non compactes. Geometry & topology, Tome 19 (2015) no. 4, pp. 2039-2080. doi : 10.2140/gt.2015.19.2039. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2039/

[1] C C Adams, The noncompact hyperbolic $3$–manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987) 601

[2] C C Adams, Volumes of $N$–cusped hyperbolic $3$–manifolds, J. London Math. Soc. 38 (1988) 555

[3] C C Adams, Waist size for cusps in hyperbolic $3$–manifolds, Topology 41 (2002) 257

[4] C C Adams, Hyperbolic knots, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier (2005) 1

[5] C C Adams, A W Reid, Systoles of hyperbolic $3$–manifolds, Math. Proc. Cambridge Philos. Soc. 128 (2000) 103

[6] I Agol, Systoles of hyperbolic $4$–manifolds,

[7] R Bacher, A Vdovina, Counting $1$–vertex triangulations of oriented surfaces, Discrete Math. 246 (2002) 13

[8] C Bavard, La systole des surfaces hyperelliptiques, prépublication de l’ENS Lyon (1992)

[9] C Bavard, Disques extrémaux et surfaces modulaires, Ann. Fac. Sci. Toulouse Math. 5 (1996) 191

[10] C Bavard, Systole et invariant d'Hermite, J. Reine Angew. Math. 482 (1997) 93

[11] M V Belolipetsky, S A Thomson, Systoles of hyperbolic manifolds, Algebr. Geom. Topol. 11 (2011) 1455

[12] N Bergeron, F Haglund, D T Wise, Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc. 83 (2011) 431

[13] F Bonahon, J P Otal, Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. London Math. Soc. 20 (1988) 255

[14] K Böröczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar. 32 (1978) 243

[15] P Buser, H Karcher, Gromov's almost flat manifolds, Astérisque 81, Soc. Math. France (1981) 148

[16] P Buser, P Sarnak, On the period matrix of a Riemann surface of large genus, Invent. Math. 117 (1994) 27

[17] J Deblois, The centered dual and the maximal injectivity radius of hyperbolic surfaces, Geom. Topol. 19 (2015) 953

[18] W Feit, Orders of finite linear groups, from: "Proceedings of the First Jamaican Conference on Group Theory and its Applications" (editors T Foguel, J Minty), Univ. West Indies (1996) 9

[19] S Friedland, Discrete groups of unitary isometries and balls in hyperbolic manifolds, from: "Proceedings of the Fourth Conference of the International Linear Algebra Society" (editors H Bart, L F Elsner, A C M Ran), Linear Algebra Appl. 241/243 (1996) 305

[20] S Friedland, The maximal orders of finite subgroups in $\mathrm{GL}_n(\mathbf{Q})$, Proc. Amer. Math. Soc. 125 (1997) 3519

[21] S Friedland, S Hersonsky, Jorgensen's inequality for discrete groups in normed algebras, Duke Math. J. 69 (1993) 593

[22] D Gabai, R Meyerhoff, P Milley, Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009) 1157

[23] M Gendulphe, Paysage systolique des surfaces hyperboliques de caractéristique $-1$, prépublication

[24] H Gieseking, Analytische Untersuchungen über topologische Gruppen, PhD thesis, Münster (1912)

[25] E Girondo, G González-Diez, On extremal discs inside compact hyperbolic surfaces, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 57

[26] M Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1

[27] M Gromov, Systoles and intersystolic inequalities, from: "Actes de la Table Ronde de Géométrie Différentielle" (editor A L Besse), Sémin. Congr. 1, Soc. Math. France (1996) 291

[28] L Guth, Notes on Gromov's systolic estimate, Geom. Dedicata 123 (2006) 113

[29] L Guth, Metaphors in systolic geometry, from: "Proceedings of the International Congress of Mathematicians, Vo II" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 745

[30] U Haagerup, H J Munkholm, Simplices of maximal volume in hyperbolic $n$–space, Acta Math. 147 (1981) 1

[31] S Hersonsky, Covolume estimates for discrete groups of hyperbolic isometries having parabolic elements, Michigan Math. J. 40 (1993) 467

[32] C D Hodgson, J R Weeks, Symmetries, isometries and length spectra of closed hyperbolic three-manifolds, Experiment. Math. 3 (1994) 261

[33] F Jenni, Über den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispielen kompakter Riemannscher Flächen, Comment. Math. Helv. 59 (1984) 193

[34] R Kellerhals, Ball packings in spaces of constant curvature and the simplicial density function, J. Reine Angew. Math. 494 (1998) 189

[35] R Kellerhals, Volumes of cusped hyperbolic manifolds, Topology 37 (1998) 719

[36] R Kellerhals, Collars in $\mathrm{PSL}(2,\mathbf{H})$, Ann. Acad. Sci. Fenn. Math. 26 (2001) 51

[37] R Kellerhals, Quaternions and some global properties of hyperbolic $5$–manifolds, Canad. J. Math. 55 (2003) 1080

[38] R Kellerhals, On the structure of hyperbolic manifolds, Israel J. Math. 143 (2004) 361

[39] G S Lakeland, C J Leininger, Systoles and Dehn surgery for hyperbolic 3-manifolds, Algebr. Geom. Topol. 14 (2014) 1441

[40] W Magnus, Residually finite groups, Bull. Amer. Math. Soc. 75 (1969) 305

[41] A Marden, Outer circles, Cambridge Univ. Press (2007)

[42] T H Marshall, Asymptotic volume formulae and hyperbolic ball packing, Ann. Acad. Sci. Fenn. Math. 24 (1999) 31

[43] G J Martin, Balls in hyperbolic manifolds, J. London Math. Soc. 40 (1989) 257

[44] J Martinet, Perfect lattices in Euclidean spaces, Grundl. Math. Wissen. 327, Springer (2003)

[45] R Meyerhoff, Sphere-packing and volume in hyperbolic $3$–space, Comment. Math. Helv. 61 (1986) 271

[46] J Milnor, Collected papers, Vol. 1: Geometry, Publish or Perish (1994)

[47] W Plesken, M Pohst, On maximal finite irreducible subgroups of $\mathrm{GL}(n, \mathbf{Z})$, V: The eight-dimensional case and a complete description of dimensions less than ten, Math. Comp. 34 (1980) 277

[48] A Przeworski, Cones embedded in hyperbolic manifolds, J. Differential Geom. 58 (2001) 219

[49] J S Purcell, J Souto, Geometric limits of knot complements, J. Topol. 3 (2010) 759

[50] A Reznikov, The volume and the injectivity radius of a hyperbolic manifold, Topology 34 (1995) 477

[51] C A Rogers, The packing of equal spheres, Proc. London Math. Soc. 8 (1958) 609

[52] P Schmutz, Riemann surfaces with shortest geodesic of maximal length, Geom. Funct. Anal. 3 (1993) 564

[53] P Schmutz, Congruence subgroups and maximal Riemann surfaces, J. Geom. Anal. 4 (1994) 207

[54] W P Thurston, The geometry and topology of three-manifolds, lecture notes, Princeton University (1978)

[55] M Wada, Conjugacy invariants of Möbius transformations, Complex Variables Theory Appl. 15 (1990) 125

[56] P L Waterman, An inscribed ball for Kleinian groups, Bull. London Math. Soc. 16 (1984) 525

[57] J R Weeks, SnapPea

[58] A Yamada, On Marden's universal constant of Fuchsian groups, II, J. Analyse Math. 41 (1982) 234

Cité par Sources :