The topology of the space of J–holomorphic maps to ℂP2
Geometry & topology, Tome 19 (2015) no. 4, pp. 1829-1894.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The purpose of this paper is to generalize a theorem of Segal proving that the space of holomorphic maps from a Riemann surface to a complex projective space is homology equivalent to the corresponding space of continuous maps through a range of dimensions increasing with degree. We will address if a similar result holds when other almost-complex structures are put on a projective space. For any compatible almost-complex structure J on P2, we prove that the inclusion map from the space of J–holomorphic maps to the space of continuous maps induces a homology surjection through a range of dimensions tending to infinity with degree. The proof involves comparing the scanning map of topological chiral homology with analytic gluing maps for J–holomorphic curves . This is an extension of the author’s work regarding genus-zero case.

DOI : 10.2140/gt.2015.19.1829
Classification : 53D05, 55P48
Keywords: almost-complex structure, little disks operad, gluing

Miller, Jeremy 1

1 Department of Mathematics, Stanford University, Building 380, Room 383A, Stanford, CA 94305, USA
@article{GT_2015_19_4_a1,
     author = {Miller, Jeremy},
     title = {The topology of the space of {J{\textendash}holomorphic} maps to {\ensuremath{\mathbb{C}}P2}},
     journal = {Geometry & topology},
     pages = {1829--1894},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2015},
     doi = {10.2140/gt.2015.19.1829},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1829/}
}
TY  - JOUR
AU  - Miller, Jeremy
TI  - The topology of the space of J–holomorphic maps to ℂP2
JO  - Geometry & topology
PY  - 2015
SP  - 1829
EP  - 1894
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1829/
DO  - 10.2140/gt.2015.19.1829
ID  - GT_2015_19_4_a1
ER  - 
%0 Journal Article
%A Miller, Jeremy
%T The topology of the space of J–holomorphic maps to ℂP2
%J Geometry & topology
%D 2015
%P 1829-1894
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1829/
%R 10.2140/gt.2015.19.1829
%F GT_2015_19_4_a1
Miller, Jeremy. The topology of the space of J–holomorphic maps to ℂP2. Geometry & topology, Tome 19 (2015) no. 4, pp. 1829-1894. doi : 10.2140/gt.2015.19.1829. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1829/

[1] M Abreu, Topology of symplectomorphism groups of $S^2\times S^2$, Invent. Math. 131 (1998) 1

[2] R Andrade, From manifolds to invariants of En-algebras, PhD thesis, MIT (2010)

[3] M F Atiyah, J D S Jones, Topological aspects of Yang–Mills theory, Comm. Math. Phys. 61 (1978) 97

[4] C P Boyer, K Galicki, Sasakian geometry, Oxford Univ. Press (2008)

[5] C P Boyer, B M Mann, Monopoles, nonlinear $\sigma$ models, and two-fold loop spaces, Comm. Math. Phys. 115 (1988) 571

[6] R L Cohen, J D S Jones, G B Segal, Stability for holomorphic spheres and Morse theory, from: "Geometry and topology" (editors K Grove, I H Madsen, E K Pedersen), Contemp. Math. 258, Amer. Math. Soc. (2000) 87

[7] J Francis, The tangent complex and Hochschild cohomology of $\mathcal{E}_n$–rings, Compos. Math. 149 (2013) 430

[8] K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant for general symplectic manifolds, from: "The Arnoldfest" (editors E Bierstone, B Khesin, A Khovanskii, J E Marsden), Fields Inst. Commun. 24, Amer. Math. Soc. (1999) 173

[9] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[10] M A Guest, The topology of the space of rational curves on a toric variety, Acta Math. 174 (1995) 119

[11] H Hofer, V Lizan, J C Sikorav, On genericity for holomorphic curves in four-dimensional almost-complex manifolds, J. Geom. Anal. 7 (1997) 149

[12] S Ivashkovich, V Shevchishin, Structure of the moduli space in a neighborhood of a cusp-curve and meromorphic hulls, Invent. Math. 136 (1999) 571

[13] S Kallel, Configuration spaces and the topology of curves in projective space, from: "Topology, geometry and algebra: Interactions and new directions" (editors A Adem, G Carlsson, R Cohen), Contemp. Math. 279, Amer. Math. Soc. (2001) 151

[14] S Kallel, Spaces of particles on manifolds and generalized Poincaré dualities, Q. J. Math. 52 (2001) 45

[15] S Kallel, I Saihi, Homotopy groups of diagonal complements,

[16] B Kleiner, J Lott, Geometrization of three-dimensional orbifolds via Ricci flow, Astérisque 365, Soc. Math. France (2014) 101

[17] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119

[18] J Lurie, Derived algebraic geometry, VI: $E[k]$–algebras, online manuscript, (2009)

[19] J P May, The geometry of iterated loop spaces, Lectures Notes in Math. 271, Springer (1972)

[20] D Mcduff, Configuration spaces of positive and negative particles, Topology 14 (1975) 91

[21] D Mcduff, The local behaviour of holomorphic curves in almost complex $4$–manifolds, J. Differential Geom. 34 (1991) 143

[22] D Mcduff, D Salamon, $J$–holomorphic curves and quantum cohomology, Univ. Lecture Series 6, Amer. Math. Soc. (1994)

[23] J Miller, Homological stability properties of spaces of rational $J$–holomorphic curves in $\mathbb{P}^2$, Algebr. Geom. Topol. 13 (2013) 453

[24] J Miller, Nonabelian Poincaré duality after stabilizing, Trans. Amer. Math. Soc. 367 (2015) 1969

[25] Y Ruan, G Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995) 259

[26] Y Ruan, G Tian, Higher genus symplectic invariants and sigma models coupled with gravity, Invent. Math. 130 (1997) 455

[27] P Salvatore, Configuration spaces with summable labels, from: "Cohomological methods in homotopy theory" (editors J Aguadé, C Broto, C Casacuberta), Progr. Math. 196, Birkhäuser (2001) 375

[28] Y Savelyev, On configuration spaces of stable maps,

[29] G Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973) 213

[30] G Segal, The topology of spaces of rational functions, Acta Math. 143 (1979) 39

[31] B Siebert, Symplectic Gromov–Witten invariants, from: "New trends in algebraic geometry" (editors K Hulek, F Catanese, C Peters, M Reid), London Math. Soc. Lecture Note Ser. 264, Cambridge Univ. Press (1999) 375

[32] B Siebert, G Tian, On the holomorphicity of genus two Lefschetz fibrations, Ann. of Math. 161 (2005) 959

[33] J C Sikorav, The gluing construction for normally generic $J$–holomorphic curves, from: "Symplectic and contact topology: Interactions and perspectives" (editors Y Eliashberg, B Khesin, F Lalonde), Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 175

[34] M Weiss, What does the classifying space of a category classify?, Homology Homotopy Appl. 7 (2005) 185

[35] K Yamaguchi, Configuration space models for spaces of maps from a Riemann surface to complex projective space, Publ. Res. Inst. Math. Sci. 39 (2003) 535

Cité par Sources :