Projective deformations of weakly orderable hyperbolic Coxeter orbifolds
Geometry & topology, Tome 19 (2015) no. 4, pp. 1777-1828.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A Coxeter n–orbifold is an n–dimensional orbifold based on a polytope with silvered boundary facets. Each pair of adjacent facets meet on a ridge of some order m, whose neighborhood is locally modeled on n modulo the dihedral group of order 2m generated by two reflections. For n 3, we study the deformation space of real projective structures on a compact Coxeter n–orbifold Q admitting a hyperbolic structure. Let e+(Q) be the number of ridges of order greater than or equal to 3. A neighborhood of the hyperbolic structure in the deformation space is a cell of dimension e+(Q) n if n = 3 and Q is weakly orderable, ie the faces of Q can be ordered so that each face contains at most 3 edges of order 2 in faces of higher indices, or Q is based on a truncation polytope.

DOI : 10.2140/gt.2015.19.1777
Classification : 57M50, 57N16, 53A20, 53C15
Keywords: real projective structure, orbifold, moduli space, Coxeter groups, representations of groups

Choi, Suhyoung 1 ; Lee, Gye-Seon 2

1 Department of Mathematical Sciences, KAIST, Daejeon 305-701, South Korea
2 Mathematisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
@article{GT_2015_19_4_a0,
     author = {Choi, Suhyoung and Lee, Gye-Seon},
     title = {Projective deformations of weakly orderable hyperbolic {Coxeter} orbifolds},
     journal = {Geometry & topology},
     pages = {1777--1828},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2015},
     doi = {10.2140/gt.2015.19.1777},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1777/}
}
TY  - JOUR
AU  - Choi, Suhyoung
AU  - Lee, Gye-Seon
TI  - Projective deformations of weakly orderable hyperbolic Coxeter orbifolds
JO  - Geometry & topology
PY  - 2015
SP  - 1777
EP  - 1828
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1777/
DO  - 10.2140/gt.2015.19.1777
ID  - GT_2015_19_4_a0
ER  - 
%0 Journal Article
%A Choi, Suhyoung
%A Lee, Gye-Seon
%T Projective deformations of weakly orderable hyperbolic Coxeter orbifolds
%J Geometry & topology
%D 2015
%P 1777-1828
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1777/
%R 10.2140/gt.2015.19.1777
%F GT_2015_19_4_a0
Choi, Suhyoung; Lee, Gye-Seon. Projective deformations of weakly orderable hyperbolic Coxeter orbifolds. Geometry & topology, Tome 19 (2015) no. 4, pp. 1777-1828. doi : 10.2140/gt.2015.19.1777. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1777/

[1] S Ballas, Deformations of noncompact, projective manifolds,

[2] D Barnette, A proof of the lower bound conjecture for convex polytopes, Pacific J. Math. 46 (1973) 349

[3] Y Benoist, Automorphismes des cônes convexes, Invent. Math. 141 (2000) 149

[4] Y Benoist, Convexes divisibles, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 387

[5] Y Benoist, Convexes divisibles, III, Ann. Sci. École Norm. Sup. 38 (2005) 793

[6] Y Benoist, Convexes hyperboliques et quasiisométries, Geom. Dedicata 122 (2006) 109

[7] Y Benoist, A survey on divisible convex sets, from: "Geometry, analysis and topology of discrete groups" (editors L Ji, K Liu, L Yang, S T Yau), Adv. Lect. Math. (ALM) 6, International Press (2008) 1

[8] Y Benoist, Five lectures on lattices in semisimple Lie groups, from: "Géométries à courbure négative ou nulle, groupes discrets et rigidités" (editors L Bessières, A Parreau, B Rémy), Sémin. Congr. 18, Soc. Math. France (2009) 117

[9] J P Benzécri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960) 229

[10] N Bourbaki, Lie groups and Lie algebras, Chapters 4–6, Elements of Math., Springer (2002)

[11] A Brøndsted, An introduction to convex polytopes, Graduate Texts in Math. 90, Springer (1983)

[12] R Charney, M Davis, When is a Coxeter system determined by its Coxeter group?, J. London Math. Soc. 61 (2000) 441

[13] S Choi, Convex decompositions of real projective surfaces, I: $\pi$–annuli and convexity, J. Differential Geom. 40 (1994) 165

[14] S Choi, Convex decompositions of real projective surfaces, II: Admissible decompositions, J. Differential Geom. 40 (1994) 239

[15] S Choi, The convex and concave decomposition of manifolds with real projective structures, Mém. Soc. Math. Fr. 78, Soc. Math. France (1999)

[16] S Choi, Geometric structures on orbifolds and holonomy representations, Geom. Dedicata 104 (2004) 161

[17] S Choi, The deformation spaces of projective structures on $3$–dimensional Coxeter orbifolds, Geom. Dedicata 119 (2006) 69

[18] S Choi, Geometric structures on $2$–orbifolds: Exploration of discrete symmetry, Math. Soc. Japan Memoirs 27, Math. Soc. Japan (2012)

[19] S Choi, W M Goldman, The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc. 34 (1997) 161

[20] S Choi, C D Hodgson, G S Lee, Projective deformations of hyperbolic Coxeter $3$–orbifolds, Geom. Dedicata 159 (2012) 125

[21] D Cooper, K Delp, The marked length spectrum of a projective manifold or orbifold, Proc. Amer. Math. Soc. 138 (2010) 3361

[22] D Cooper, D D Long, M B Thistlethwaite, Computing varieties of representations of hyperbolic $3$–manifolds into $\mathrm{SL}(4,\mathbb{R})$, Experiment. Math. 15 (2006) 291

[23] D Cooper, D D Long, M B Thistlethwaite, Flexing closed hyperbolic manifolds, Geom. Topol. 11 (2007) 2413

[24] M W Davis, The geometry and topology of Coxeter groups, London Math. Soc. Monographs 32, Princeton Univ. Press (2008)

[25] M W Davis, Lectures on orbifolds and reflection groups, from: "Transformation groups and moduli spaces of curves" (editors L Ji, S T Yau), Adv. Lect. Math. (ALM) 16, International Press (2011) 63

[26] M W Davis, When are two Coxeter orbifolds diffeomorphic?, Michigan Math. J. 63 (2014) 401

[27] F Esselmann, The classification of compact hyperbolic Coxeter $d$–polytopes with $d+2$ facets, Comment. Math. Helv. 71 (1996) 229

[28] J L Fouquet, H Thuillier, On removable edges in $3$–connected cubic graphs, Discrete Math. 312 (2012) 2652

[29] F R Gantmacher, The theory of matrices, Vol. $1$, $2$, Chelsea Publ. (1959)

[30] W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200

[31] W M Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791

[32] R Greene, The deformation theory of discrete reflection groups and projective structures, PhD thesis, Ohio State University (2013)

[33] B Grünbaum, Convex polytopes, Graduate Texts in Math. 221, Springer (2003)

[34] M Heusener, J Porti, Infinitesimal projective rigidity under Dehn filling, Geom. Topol. 15 (2011) 2017

[35] D Johnson, J J Millson, Deformation spaces associated to compact hyperbolic manifolds, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 48

[36] V G Kac, È B Vinberg, Quasihomogeneous cones, Mat. Zametki 1 (1967) 347

[37] M Kapovich, Deformations of representations of discrete subgroups of $\mathrm{SO}(3,1)$, Math. Ann. 299 (1994) 341

[38] J L Koszul, Déformations de connexions localement plates, Ann. Inst. Fourier (Grenoble) 18 (1968) 103

[39] N H Kuiper, On convex locally-projective spaces, from: "Convegno Internazionale di Geometria Differenziale, Italia, 1953", Edizioni Cremonese (1954) 200

[40] L Marquis, Espace des modules de certains polyèdres projectifs miroirs, Geom. Dedicata 147 (2010) 47

[41] D Qi, On irreducible, infinite, nonaffine Coxeter groups, Fund. Math. 193 (2007) 79

[42] M S Raghunathan, Discrete subgroups of Lie groups, Springer (1972)

[43] R K W Roeder, J H Hubbard, W D Dunbar, Andreev's theorem on hyperbolic polyhedra, Ann. Inst. Fourier (Grenoble) 57 (2007) 825

[44] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. lecture notes (1979)

[45] W P Thurston, Three-dimensional geometry and topology, Vol. $1$, Princeton Math. Series 35, Princeton Univ. Press (1997)

[46] W T Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947) 107

[47] È B Vinberg, Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 1072

[48] È B Vinberg, Hyperbolic groups of reflections, Uspekhi Mat. Nauk 40 (1985) 29, 255

[49] A Weil, On discrete subgroups of Lie groups, II, Ann. of Math. 75 (1962) 578

[50] A Weil, Remarks on the cohomology of groups, Ann. of Math. 80 (1964) 149

[51] M Wiemeler, Exotic torus manifolds and equivariant smooth structures on quasitoric manifolds, Math. Z. 273 (2013) 1063

Cité par Sources :