Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a compact complex manifold, be the bounded derived category of constructible sheaves on , and be the Fukaya category of . A Lagrangian brane in is holomorphic if the underlying Lagrangian submanifold is complex analytic in , the holomorphic cotangent bundle of . We prove that under the quasiequivalence between and established by Nadler and Zaslow, holomorphic Lagrangian branes with appropriate grading correspond to perverse sheaves.
Jin, Xin 1
@article{GT_2015_19_3_a14, author = {Jin, Xin}, title = {Holomorphic {Lagrangian} branes correspond to perverse sheaves}, journal = {Geometry & topology}, pages = {1685--1735}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2015}, doi = {10.2140/gt.2015.19.1685}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1685/} }
Jin, Xin. Holomorphic Lagrangian branes correspond to perverse sheaves. Geometry & topology, Tome 19 (2015) no. 3, pp. 1685-1735. doi : 10.2140/gt.2015.19.1685. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1685/
[1] Floer cohomology of real Lagrangians in the Fermat quintic threefold, PhD Thesis, The University of Wisconsin Madison (2010)
,[2] A beginner's introduction to Fukaya categories, from: "Contact and symplectic topology" (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc. (2014) 85
,[3] Faisceaux pervers, from: "Analysis and topology on singular spaces, I", Astérisque 100, Soc. Math. France (1982) 5
, , ,[4] Geometric categories and $o$–minimal structures, Duke Math. J. 84 (1996) 497
, ,[5] Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997) 96
, ,[6] Stratified Morse theory, Ergeb. Math. Grenzgeb. 14, Springer (1988)
, ,[7] Finite volume flows and Morse theory, Ann. of Math. 153 (2001) 1
, ,[8] $D$–modules, perverse sheaves and representation theory, Progress in Math. 236, Birkhäuser (2008)
, , ,[9] $A$–branes and noncommutative geometry,
,[10] Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007) 1
, ,[11] Sheaves on manifolds, Grundl. Math. Wissen. 292, Springer (1990)
, ,[12] Homological mirror symmetry and torus fibrations, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. Publ. (2001) 203
, ,[13] Stratified Morse theory: Past and present, Pure Appl. Math. Q. 2 (2006) 1053
,[14] Microlocal branes are constructible sheaves, Selecta Math. 15 (2009) 563
,[15] Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009) 233
, ,[16] Complex analytic geometry and analytic-geometric categories, J. Reine Angew. Math. 626 (2009) 39
, ,[17] Characteristic cycles of constructible sheaves, Invent. Math. 124 (1996) 451
, ,[18] Fukaya categories and Picard–Lefschetz theory, Zurich Lectures in Adv. Math., European Math. Soc. (2008)
,[19] Some properties of holomorphic curves in almost complex manifolds, from: "Holomorphic curves in symplectic geometry" (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 165
,Cité par Sources :