Holomorphic Lagrangian branes correspond to perverse sheaves
Geometry & topology, Tome 19 (2015) no. 3, pp. 1685-1735.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let X be a compact complex manifold, Dcb(X) be the bounded derived category of constructible sheaves on X, and Fuk(TX) be the Fukaya category of TX. A Lagrangian brane in Fuk(TX) is holomorphic if the underlying Lagrangian submanifold is complex analytic in TX, the holomorphic cotangent bundle of X. We prove that under the quasiequivalence between Dcb(X) and DFuk(TX) established by Nadler and Zaslow, holomorphic Lagrangian branes with appropriate grading correspond to perverse sheaves.

DOI : 10.2140/gt.2015.19.1685
Classification : 53D40, 32S60
Keywords: Fukaya category, holomorphic Lagrangian branes, perverse sheaves, constructible sheaves, Nadler–Zaslow correspondence

Jin, Xin 1

1 Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720, USA
@article{GT_2015_19_3_a14,
     author = {Jin, Xin},
     title = {Holomorphic {Lagrangian} branes correspond to perverse sheaves},
     journal = {Geometry & topology},
     pages = {1685--1735},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     doi = {10.2140/gt.2015.19.1685},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1685/}
}
TY  - JOUR
AU  - Jin, Xin
TI  - Holomorphic Lagrangian branes correspond to perverse sheaves
JO  - Geometry & topology
PY  - 2015
SP  - 1685
EP  - 1735
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1685/
DO  - 10.2140/gt.2015.19.1685
ID  - GT_2015_19_3_a14
ER  - 
%0 Journal Article
%A Jin, Xin
%T Holomorphic Lagrangian branes correspond to perverse sheaves
%J Geometry & topology
%D 2015
%P 1685-1735
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1685/
%R 10.2140/gt.2015.19.1685
%F GT_2015_19_3_a14
Jin, Xin. Holomorphic Lagrangian branes correspond to perverse sheaves. Geometry & topology, Tome 19 (2015) no. 3, pp. 1685-1735. doi : 10.2140/gt.2015.19.1685. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1685/

[1] G Alston, Floer cohomology of real Lagrangians in the Fermat quintic threefold, PhD Thesis, The University of Wisconsin Madison (2010)

[2] D Auroux, A beginner's introduction to Fukaya categories, from: "Contact and symplectic topology" (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc. (2014) 85

[3] A A Beĭlinson, J Bernstein, P Deligne, Faisceaux pervers, from: "Analysis and topology on singular spaces, I", Astérisque 100, Soc. Math. France (1982) 5

[4] L Van Den Dries, C Miller, Geometric categories and $o$–minimal structures, Duke Math. J. 84 (1996) 497

[5] K Fukaya, Y G Oh, Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997) 96

[6] M Goresky, R Macpherson, Stratified Morse theory, Ergeb. Math. Grenzgeb. 14, Springer (1988)

[7] F R Harvey, H B Lawson Jr., Finite volume flows and Morse theory, Ann. of Math. 153 (2001) 1

[8] R Hotta, K Takeuchi, T Tanisaki, $D$–modules, perverse sheaves and representation theory, Progress in Math. 236, Birkhäuser (2008)

[9] A Kapustin, $A$–branes and noncommutative geometry,

[10] A Kapustin, E Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007) 1

[11] M Kashiwara, P Schapira, Sheaves on manifolds, Grundl. Math. Wissen. 292, Springer (1990)

[12] M Kontsevich, Y Soibelman, Homological mirror symmetry and torus fibrations, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. Publ. (2001) 203

[13] D B Massey, Stratified Morse theory: Past and present, Pure Appl. Math. Q. 2 (2006) 1053

[14] D Nadler, Microlocal branes are constructible sheaves, Selecta Math. 15 (2009) 563

[15] D Nadler, E Zaslow, Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009) 233

[16] Y Peterzil, S Starchenko, Complex analytic geometry and analytic-geometric categories, J. Reine Angew. Math. 626 (2009) 39

[17] W Schmid, K Vilonen, Characteristic cycles of constructible sheaves, Invent. Math. 124 (1996) 451

[18] P Seidel, Fukaya categories and Picard–Lefschetz theory, Zurich Lectures in Adv. Math., European Math. Soc. (2008)

[19] J C Sikorav, Some properties of holomorphic curves in almost complex manifolds, from: "Holomorphic curves in symplectic geometry" (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 165

Cité par Sources :