“Slicing” the Hopf link
Geometry & topology, Tome 19 (2015) no. 3, pp. 1657-1683.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A link in the 3–sphere is called (smoothly) slice if its components bound disjoint smoothly embedded disks in the 4–ball. More generally, given a 4–manifold M with a distinguished circle in its boundary, a link in the 3–sphere is called M–slice if its components bound in the 4–ball disjoint embedded copies of M. A 4–manifold M is constructed such that the Borromean rings are not M–slice but the Hopf link is. This contrasts the classical link-slice setting where the Hopf link may be thought of as “the most nonslice” link. Further examples and an obstruction for a family of decompositions of the 4–ball are discussed in the context of the A-B slice problem.

DOI : 10.2140/gt.2015.19.1657
Classification : 57N13, 57M25, 57M27
Keywords: Slice links, the Milnor group, the A-B slice problem

Krushkal, Vyacheslav 1

1 Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA
@article{GT_2015_19_3_a13,
     author = {Krushkal, Vyacheslav},
     title = {{\textquotedblleft}Slicing{\textquotedblright} the {Hopf} link},
     journal = {Geometry & topology},
     pages = {1657--1683},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     doi = {10.2140/gt.2015.19.1657},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1657/}
}
TY  - JOUR
AU  - Krushkal, Vyacheslav
TI  - “Slicing” the Hopf link
JO  - Geometry & topology
PY  - 2015
SP  - 1657
EP  - 1683
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1657/
DO  - 10.2140/gt.2015.19.1657
ID  - GT_2015_19_3_a13
ER  - 
%0 Journal Article
%A Krushkal, Vyacheslav
%T “Slicing” the Hopf link
%J Geometry & topology
%D 2015
%P 1657-1683
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1657/
%R 10.2140/gt.2015.19.1657
%F GT_2015_19_3_a13
Krushkal, Vyacheslav. “Slicing” the Hopf link. Geometry & topology, Tome 19 (2015) no. 3, pp. 1657-1683. doi : 10.2140/gt.2015.19.1657. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1657/

[1] M H Freedman, A geometric reformulation of $4$–dimensional surgery, Topology Appl. 24 (1986) 133

[2] M H Freedman, V Krushkal, Topological arbiters, J. Topol. 5 (2012) 226

[3] M H Freedman, X S Lin, On the $(A,B)$–slice problem, Topology 28 (1989) 91

[4] M H Freedman, F Quinn, Topology of $4$–manifolds, Princeton Math. Series 39, Princeton Univ. Press (1990)

[5] V S Krushkal, Exponential separation in $4$–manifolds, Geom. Topol. 4 (2000) 397

[6] V S Krushkal, A counterexample to the strong version of Freedman's conjecture, Ann. of Math. 168 (2008) 675

[7] V S Krushkal, Robust four-manifolds and robust embeddings, Pacific J. Math. 248 (2010) 191

[8] W Magnus, A Karrass, D Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience (1966)

[9] J Milnor, Link groups, Ann. of Math. 59 (1954) 177

Cité par Sources :