Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this paper, we study Manolescu’s construction of the relative Bauer–Furuta invariants arising from the Seiberg–Witten equations on –manifolds with boundary. The main goal of this paper is to introduce a new gauge fixing condition in order to apply the finite-dimensional approximation technique. We also hope to provide a framework to extend Manolescu’s construction to general –manifolds.
Khandhawit, Tirasan 1
@article{GT_2015_19_3_a12, author = {Khandhawit, Tirasan}, title = {A new gauge slice for the relative {Bauer{\textendash}Furuta} invariants}, journal = {Geometry & topology}, pages = {1631--1655}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2015}, doi = {10.2140/gt.2015.19.1631}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1631/} }
TY - JOUR AU - Khandhawit, Tirasan TI - A new gauge slice for the relative Bauer–Furuta invariants JO - Geometry & topology PY - 2015 SP - 1631 EP - 1655 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1631/ DO - 10.2140/gt.2015.19.1631 ID - GT_2015_19_3_a12 ER -
Khandhawit, Tirasan. A new gauge slice for the relative Bauer–Furuta invariants. Geometry & topology, Tome 19 (2015) no. 3, pp. 1631-1655. doi : 10.2140/gt.2015.19.1631. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1631/
[1] Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43
, , ,[2] A stable cohomotopy refinement of Seiberg–Witten invariants, II, Invent. Math. 155 (2004) 21
,[3] A stable cohomotopy refinement of Seiberg–Witten invariants, I, Invent. Math. 155 (2004) 1
, ,[4] Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Math. 38, Amer. Math. Soc. (1978)
,[5] Monopole equation and the $\frac{11}8$–conjecture, Math. Res. Lett. 8 (2001) 279
,[6] Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. 177 (1999) 37
, , ,[7] Twisted Manolescu–Floer spectra for Seiberg–Witten, PhD thesis, Massachusetts Institute of Technology (2013)
,[8] Periodic Floer pro-spectra from the Seiberg–Witten equations,
, ,[9] Monopoles and three-manifolds, New Math. Monographs 10, Cambridge Univ. Press (2007)
, ,[10] On the two definitions of the Conley index, Proc. Amer. Math. Soc. 106 (1989) 1117
,[11] A Morse–Bott approach to monopole Floer homology and the triangulation conjecture,
,[12] $\mathrm{Pin}(2)$–equivariant KO–theory and intersection forms of spin four-manifolds,
,[13] $\mathrm{Pin(2)}$–equivariant Seiberg–Witten Floer homology and the triangulation conjecture,
,[14] Seiberg–Witten–Floer stable homotopy type of three-manifolds with $b_1=0$, Geom. Topol. 7 (2003) 889
,[15] On the intersection forms of spin four-manifolds with boundary, Math. Ann. 359 (2014) 695
,[16] Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985) 1
,[17] Hodge decomposition: A method for solving boundary value problems, Lecture Notes in Math. 1607, Springer (1995)
,Cité par Sources :