A new gauge slice for the relative Bauer–Furuta invariants
Geometry & topology, Tome 19 (2015) no. 3, pp. 1631-1655.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper, we study Manolescu’s construction of the relative Bauer–Furuta invariants arising from the Seiberg–Witten equations on 4–manifolds with boundary. The main goal of this paper is to introduce a new gauge fixing condition in order to apply the finite-dimensional approximation technique. We also hope to provide a framework to extend Manolescu’s construction to general 4–manifolds.

DOI : 10.2140/gt.2015.19.1631
Classification : 57R57, 57R58
Keywords: $4$–manifolds, Seiberg–Witten equations, Bauer–Furuta invariant

Khandhawit, Tirasan 1

1 Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, 5-1-5 Kashiwa-No-Ha, Kashiwa, Chiba 277-8583, Japan
@article{GT_2015_19_3_a12,
     author = {Khandhawit, Tirasan},
     title = {A new gauge slice for the relative {Bauer{\textendash}Furuta} invariants},
     journal = {Geometry & topology},
     pages = {1631--1655},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     doi = {10.2140/gt.2015.19.1631},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1631/}
}
TY  - JOUR
AU  - Khandhawit, Tirasan
TI  - A new gauge slice for the relative Bauer–Furuta invariants
JO  - Geometry & topology
PY  - 2015
SP  - 1631
EP  - 1655
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1631/
DO  - 10.2140/gt.2015.19.1631
ID  - GT_2015_19_3_a12
ER  - 
%0 Journal Article
%A Khandhawit, Tirasan
%T A new gauge slice for the relative Bauer–Furuta invariants
%J Geometry & topology
%D 2015
%P 1631-1655
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1631/
%R 10.2140/gt.2015.19.1631
%F GT_2015_19_3_a12
Khandhawit, Tirasan. A new gauge slice for the relative Bauer–Furuta invariants. Geometry & topology, Tome 19 (2015) no. 3, pp. 1631-1655. doi : 10.2140/gt.2015.19.1631. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1631/

[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43

[2] S Bauer, A stable cohomotopy refinement of Seiberg–Witten invariants, II, Invent. Math. 155 (2004) 21

[3] S Bauer, M Furuta, A stable cohomotopy refinement of Seiberg–Witten invariants, I, Invent. Math. 155 (2004) 1

[4] C Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Math. 38, Amer. Math. Soc. (1978)

[5] M Furuta, Monopole equation and the $\frac{11}8$–conjecture, Math. Res. Lett. 8 (2001) 279

[6] T Iwaniec, C Scott, B Stroffolini, Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. 177 (1999) 37

[7] T Khandhawit, Twisted Manolescu–Floer spectra for Seiberg–Witten, PhD thesis, Massachusetts Institute of Technology (2013)

[8] P Kronheimer, C Manolescu, Periodic Floer pro-spectra from the Seiberg–Witten equations,

[9] P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monographs 10, Cambridge Univ. Press (2007)

[10] H L Kurland, On the two definitions of the Conley index, Proc. Amer. Math. Soc. 106 (1989) 1117

[11] F Lin, A Morse–Bott approach to monopole Floer homology and the triangulation conjecture,

[12] J Lin, $\mathrm{Pin}(2)$–equivariant KO–theory and intersection forms of spin four-manifolds,

[13] C Manolescu, $\mathrm{Pin(2)}$–equivariant Seiberg–Witten Floer homology and the triangulation conjecture,

[14] C Manolescu, Seiberg–Witten–Floer stable homotopy type of three-manifolds with $b_1=0$, Geom. Topol. 7 (2003) 889

[15] C Manolescu, On the intersection forms of spin four-manifolds with boundary, Math. Ann. 359 (2014) 695

[16] D Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985) 1

[17] G Schwarz, Hodge decomposition: A method for solving boundary value problems, Lecture Notes in Math. 1607, Springer (1995)

Cité par Sources :