Geodesics and horizontal-path spaces in Carnot groups
Geometry & topology, Tome 19 (2015) no. 3, pp. 1569-1630.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study properties of the space of horizontal paths joining the origin with a vertical point on a generic two-step Carnot group. The energy is a Morse-Bott functional on paths and its critical points (sub-Riemannian geodesics) appear in families (compact critical manifolds) with controlled topology. We study the asymptotic of the number of critical manifolds as the energy grows. The topology of the horizontal-path space is also investigated, and we find asymptotic results for the total Betti number of the sublevels of the energy as it goes to infinity. We interpret these results as local invariants of the sub-Riemannian structure.

DOI : 10.2140/gt.2015.19.1569
Classification : 53C17, 37J60, 58E05
Keywords: Loop spaces, Carnot groups, Morse–Bott theory, sub-Riemannian geometry

Agrachev, Andrei A 1 ; Gentile, Alessandro 2 ; Lerario, Antonio 3

1 SISSA & IM SO RAS I-34136 Trieste, Italy
2 Sissa, I-34136 Trieste, Italy
3 Institut Camille Jordan, 69622 Villeurbanne, France
@article{GT_2015_19_3_a11,
     author = {Agrachev, Andrei A and Gentile, Alessandro and Lerario, Antonio},
     title = {Geodesics and horizontal-path spaces in {Carnot} groups},
     journal = {Geometry & topology},
     pages = {1569--1630},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     doi = {10.2140/gt.2015.19.1569},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1569/}
}
TY  - JOUR
AU  - Agrachev, Andrei A
AU  - Gentile, Alessandro
AU  - Lerario, Antonio
TI  - Geodesics and horizontal-path spaces in Carnot groups
JO  - Geometry & topology
PY  - 2015
SP  - 1569
EP  - 1630
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1569/
DO  - 10.2140/gt.2015.19.1569
ID  - GT_2015_19_3_a11
ER  - 
%0 Journal Article
%A Agrachev, Andrei A
%A Gentile, Alessandro
%A Lerario, Antonio
%T Geodesics and horizontal-path spaces in Carnot groups
%J Geometry & topology
%D 2015
%P 1569-1630
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1569/
%R 10.2140/gt.2015.19.1569
%F GT_2015_19_3_a11
Agrachev, Andrei A; Gentile, Alessandro; Lerario, Antonio. Geodesics and horizontal-path spaces in Carnot groups. Geometry & topology, Tome 19 (2015) no. 3, pp. 1569-1630. doi : 10.2140/gt.2015.19.1569. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1569/

[1] A A Agrachëv, The topology of quadratic mappings and Hessians of smooth mappings, from: "Algebra, Topology, Geometry" (editor R V Gamkrelidze), Itogi Nauki i Tekhniki 26, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. (1988) 85, 162

[2] A A Agrachëv, U Boscain, D Barilari, Introduction to Riemannian and sub-Riemannian geometry (2015)

[3] A A Agrachëv, A Lerario, Systems of quadratic inequalities, Proc. Lond. Math. Soc. 105 (2012) 622

[4] J Bochnak, M Coste, M F Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb. 36, Springer (1998)

[5] U Boscain, J P Gauthier, On the spherical Hausdorff measure in step $2$ corank–$2$ sub-Riemannian geometry, SIAM J. Control Optim. 51 (2013) 4450

[6] R Bott, Nondegenerate critical manifolds, Ann. of Math. 60 (1954) 248

[7] R Bott, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. 7 (1982) 331

[8] K C Chang, Infinite-dimensional Morse theory and multiple solution problems, Progr. Nonlinear Diff. Eq. Appl. 6, Birkhäuser (1993)

[9] Z Ge, Horizontal path spaces and Carnot–Carathéodory metrics, Pacific J. Math. 161 (1993) 255

[10] T Kato, Perturbation theory for linear operators, Classics in Math., Springer (1995)

[11] W Klingenberg, Lectures on closed geodesics, Ergeb. Math. Grenzgeb. 230, Springer (1978)

[12] A Lerario, Complexity of intersection of real quadrics and topology of symmetric determinantal varieties, to appear in J. of the Eur. Math. Soc.

[13] A Lerario, Convex pencils of real quadratic forms, Discrete Comput. Geom. 48 (2012) 1025

[14] J Milnor, Morse theory, Annals of Math. Studies 51, Princeton Univ. Press (1963)

[15] A L Onishchik, È B Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Math., Springer (1990)

[16] P Pansu, Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1

[17] S Semmes, An introduction to Heisenberg groups in analysis and geometry, Notices Amer. Math. Soc. 50 (2003) 640

Cité par Sources :