Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study properties of the space of horizontal paths joining the origin with a vertical point on a generic two-step Carnot group. The energy is a Morse-Bott functional on paths and its critical points (sub-Riemannian geodesics) appear in families (compact critical manifolds) with controlled topology. We study the asymptotic of the number of critical manifolds as the energy grows. The topology of the horizontal-path space is also investigated, and we find asymptotic results for the total Betti number of the sublevels of the energy as it goes to infinity. We interpret these results as local invariants of the sub-Riemannian structure.
Agrachev, Andrei A 1 ; Gentile, Alessandro 2 ; Lerario, Antonio 3
@article{GT_2015_19_3_a11, author = {Agrachev, Andrei A and Gentile, Alessandro and Lerario, Antonio}, title = {Geodesics and horizontal-path spaces in {Carnot} groups}, journal = {Geometry & topology}, pages = {1569--1630}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2015}, doi = {10.2140/gt.2015.19.1569}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1569/} }
TY - JOUR AU - Agrachev, Andrei A AU - Gentile, Alessandro AU - Lerario, Antonio TI - Geodesics and horizontal-path spaces in Carnot groups JO - Geometry & topology PY - 2015 SP - 1569 EP - 1630 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1569/ DO - 10.2140/gt.2015.19.1569 ID - GT_2015_19_3_a11 ER -
%0 Journal Article %A Agrachev, Andrei A %A Gentile, Alessandro %A Lerario, Antonio %T Geodesics and horizontal-path spaces in Carnot groups %J Geometry & topology %D 2015 %P 1569-1630 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1569/ %R 10.2140/gt.2015.19.1569 %F GT_2015_19_3_a11
Agrachev, Andrei A; Gentile, Alessandro; Lerario, Antonio. Geodesics and horizontal-path spaces in Carnot groups. Geometry & topology, Tome 19 (2015) no. 3, pp. 1569-1630. doi : 10.2140/gt.2015.19.1569. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1569/
[1] The topology of quadratic mappings and Hessians of smooth mappings, from: "Algebra, Topology, Geometry" (editor R V Gamkrelidze), Itogi Nauki i Tekhniki 26, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. (1988) 85, 162
,[2] Introduction to Riemannian and sub-Riemannian geometry (2015)
, , ,[3] Systems of quadratic inequalities, Proc. Lond. Math. Soc. 105 (2012) 622
, ,[4] Real algebraic geometry, Ergeb. Math. Grenzgeb. 36, Springer (1998)
, , ,[5] On the spherical Hausdorff measure in step $2$ corank–$2$ sub-Riemannian geometry, SIAM J. Control Optim. 51 (2013) 4450
, ,[6] Nondegenerate critical manifolds, Ann. of Math. 60 (1954) 248
,[7] Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. 7 (1982) 331
,[8] Infinite-dimensional Morse theory and multiple solution problems, Progr. Nonlinear Diff. Eq. Appl. 6, Birkhäuser (1993)
,[9] Horizontal path spaces and Carnot–Carathéodory metrics, Pacific J. Math. 161 (1993) 255
,[10] Perturbation theory for linear operators, Classics in Math., Springer (1995)
,[11] Lectures on closed geodesics, Ergeb. Math. Grenzgeb. 230, Springer (1978)
,[12] Complexity of intersection of real quadrics and topology of symmetric determinantal varieties, to appear in J. of the Eur. Math. Soc.
,[13] Convex pencils of real quadratic forms, Discrete Comput. Geom. 48 (2012) 1025
,[14] Morse theory, Annals of Math. Studies 51, Princeton Univ. Press (1963)
,[15] Lie groups and algebraic groups, Springer Series in Soviet Math., Springer (1990)
, ,[16] Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1
,[17] An introduction to Heisenberg groups in analysis and geometry, Notices Amer. Math. Soc. 50 (2003) 640
,Cité par Sources :