Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We characterize the rate of convergence of a converging volume-normalized Yamabe flow in terms of Morse-theoretic properties of the limiting metric. If the limiting metric is an integrable critical point for the Yamabe functional (for example, this holds when the critical point is nondegenerate), then we show that the flow converges exponentially fast. In general, we make use of a suitable Łojasiewicz–Simon inequality to prove that the slowest the flow will converge is polynomially. When the limit metric satisfies an Adams–Simon-type condition we prove that there exist flows converging to it exactly at a polynomial rate. We conclude by constructing explicit examples of this phenomenon. These seem to be the first examples of a slowly converging solution to a geometric flow.
Carlotto, Alessandro 1 ; Chodosh, Otis 1 ; Rubinstein, Yanir 2
@article{GT_2015_19_3_a10, author = {Carlotto, Alessandro and Chodosh, Otis and Rubinstein, Yanir}, title = {Slowly converging {Yamabe} flows}, journal = {Geometry & topology}, pages = {1523--1568}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2015}, doi = {10.2140/gt.2015.19.1523}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1523/} }
TY - JOUR AU - Carlotto, Alessandro AU - Chodosh, Otis AU - Rubinstein, Yanir TI - Slowly converging Yamabe flows JO - Geometry & topology PY - 2015 SP - 1523 EP - 1568 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1523/ DO - 10.2140/gt.2015.19.1523 ID - GT_2015_19_3_a10 ER -
Carlotto, Alessandro; Chodosh, Otis; Rubinstein, Yanir. Slowly converging Yamabe flows. Geometry & topology, Tome 19 (2015) no. 3, pp. 1523-1568. doi : 10.2140/gt.2015.19.1523. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1523/
[1] Rates of asymptotic convergence near isolated singularities of geometric extrema, Indiana Univ. Math. J. 37 (1988) 225
, ,[2] Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976) 269
,[3] Le spectre d'une variété riemannienne, Lecture Notes in Mathematics 194, Springer (1971)
, , ,[4] Interpolation spaces: An introduction, Grundl. Math. Wissen. 223, Springer (1976)
, ,[5] Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions, Pacific J. Math. 266 (2013) 1
, ,[6] On characterization of solutions of some nonlinear differential equations and applications, SIAM J. Math. Anal. 25 (1994) 859
, ,[7] Convergence of the Yamabe flow for arbitrary initial energy, J. Differential Geom. 69 (2005) 217
,[8] Convergence of the Yamabe flow in dimension $6$ and higher, Invent. Math. 170 (2007) 541
,[9] A short proof for the convergence of the Yamabe flow on $S^n$, Pure Appl. Math. Q. 3 (2007) 499
,[10] Evolution equations in Riemannian geometry, Jpn. J. Math. 6 (2011) 45
,[11] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989) 271
, , ,[12] On the \Lojasiewicz–Simon gradient inequality, J. Funct. Anal. 201 (2003) 572
,[13] Monotonicity properties of the period function and the number of constant scalar curvature metrics on $S^1\times S^{n-1}$, preprint (1994)
, ,[14] The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Comm. Pure Appl. Math. 45 (1992) 1003
,[15] Ricci flow and the metric completion of the space of Kähler metrics, Amer. J. Math. 135 (2013) 1477
, ,[16] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 209
, , ,[17] Ricci flow, Einstein metrics and the Yamabe invariant,
,[18] The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987) 37
, ,[19] Second order parabolic differential equations, World Scientific (1996)
,[20] Une propriété topologique des sous-ensembles analytiques réels, from: "Les Équations aux Dérivées Partielles", Éditions du CNRS (1963) 87
,[21] Moduli spaces of singular Yamabe metrics, J. Amer. Math. Soc. 9 (1996) 303
, , ,[22] Riemannian geometry, Graduate Texts in Mathematics 171, Springer (2006)
,[23] Smooth and singular Kähler–Einstein metrics, from: "Geometric and Spectral Analysis" (editors P Albin, D Jakobson, F Rochon), Contemp. Math. 630, Amer. Math. Soc. and Centre Recherches Mathematiques (2014) 45
,[24] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984) 479
,[25] Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, from: "Topics in calculus of variations" (editor M Giaquinta), Lecture Notes in Math. 1365, Springer (1989) 120
,[26] Convergence of the Yamabe flow for “large” energies, J. Reine Angew. Math. 562 (2003) 59
, ,[27] Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. 118 (1983) 525
,[28] Theorems on regularity and singularity of energy minimizing maps, Birkhäuser (1996)
,[29] Curvature flows on surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. 1 (2002) 247
,[30] Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968) 265
,[31] On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960) 21
,[32] Global existence and convergence of Yamabe flow, J. Differential Geom. 39 (1994) 35
,[33] Nonlinear functional analysis and its applications, I: Fixed-point theorems, Springer (1986)
,Cité par Sources :