Lawrence–Krammer–Bigelow representations and dual Garside length of braids
Geometry & topology, Tome 19 (2015) no. 3, pp. 1361-1381.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the span of the variable q in the Lawrence–Krammer–Bigelow representation matrix of a braid is equal to twice the dual Garside length of the braid, as was conjectured by Krammer. Our proof is close in spirit to Bigelow’s geometric approach. The key observation is that the dual Garside length of a braid can be read off a certain labeling of its curve diagram.

DOI : 10.2140/gt.2015.19.1361
Classification : 20F36, 20F10, 57M07
Keywords: Lawrence-Krammer-Bigelow representation, braid group, curve diagram, dual Garside length

Ito, Tetsuya 1 ; Wiest, Bertold 2

1 Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
2 IRMAR, UMR 6625 du CNRS, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
@article{GT_2015_19_3_a5,
     author = {Ito, Tetsuya and Wiest, Bertold},
     title = {Lawrence{\textendash}Krammer{\textendash}Bigelow representations and dual {Garside} length of braids},
     journal = {Geometry & topology},
     pages = {1361--1381},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     doi = {10.2140/gt.2015.19.1361},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1361/}
}
TY  - JOUR
AU  - Ito, Tetsuya
AU  - Wiest, Bertold
TI  - Lawrence–Krammer–Bigelow representations and dual Garside length of braids
JO  - Geometry & topology
PY  - 2015
SP  - 1361
EP  - 1381
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1361/
DO  - 10.2140/gt.2015.19.1361
ID  - GT_2015_19_3_a5
ER  - 
%0 Journal Article
%A Ito, Tetsuya
%A Wiest, Bertold
%T Lawrence–Krammer–Bigelow representations and dual Garside length of braids
%J Geometry & topology
%D 2015
%P 1361-1381
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1361/
%R 10.2140/gt.2015.19.1361
%F GT_2015_19_3_a5
Ito, Tetsuya; Wiest, Bertold. Lawrence–Krammer–Bigelow representations and dual Garside length of braids. Geometry & topology, Tome 19 (2015) no. 3, pp. 1361-1381. doi : 10.2140/gt.2015.19.1361. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1361/

[1] S J Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001) 471

[2] S J Bigelow, The Lawrence–Krammer representation, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 51

[3] S J Bigelow, Homological representations of the Iwahori–Hecke algebra, from: "Proceedings of the Casson Fest" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7 (2004) 493

[4] J Birman, K H Ko, S J Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998) 322

[5] T Ito, B Wiest, Erratum to “How to read the length of a braid from its curve diagram” [MR2813531], Groups Geom. Dyn. 7 (2013) 495

[6] D Krammer, The braid group $B_4$ is linear, Invent. Math. 142 (2000) 451

[7] D Krammer, Braid groups are linear, Ann. of Math. 155 (2002) 131

[8] R J Lawrence, Homological representations of the Hecke algebra, Comm. Math. Phys. 135 (1990) 141

[9] L Paoluzzi, L Paris, A note on the Lawrence–Krammer–Bigelow representation, Algebr. Geom. Topol. 2 (2002) 499

[10] B Wiest, How to read the length of a braid from its curve diagram, Groups Geom. Dyn. 5 (2011) 673

Cité par Sources :