Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the span of the variable in the Lawrence–Krammer–Bigelow representation matrix of a braid is equal to twice the dual Garside length of the braid, as was conjectured by Krammer. Our proof is close in spirit to Bigelow’s geometric approach. The key observation is that the dual Garside length of a braid can be read off a certain labeling of its curve diagram.
Ito, Tetsuya 1 ; Wiest, Bertold 2
@article{GT_2015_19_3_a5, author = {Ito, Tetsuya and Wiest, Bertold}, title = {Lawrence{\textendash}Krammer{\textendash}Bigelow representations and dual {Garside} length of braids}, journal = {Geometry & topology}, pages = {1361--1381}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2015}, doi = {10.2140/gt.2015.19.1361}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1361/} }
TY - JOUR AU - Ito, Tetsuya AU - Wiest, Bertold TI - Lawrence–Krammer–Bigelow representations and dual Garside length of braids JO - Geometry & topology PY - 2015 SP - 1361 EP - 1381 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1361/ DO - 10.2140/gt.2015.19.1361 ID - GT_2015_19_3_a5 ER -
%0 Journal Article %A Ito, Tetsuya %A Wiest, Bertold %T Lawrence–Krammer–Bigelow representations and dual Garside length of braids %J Geometry & topology %D 2015 %P 1361-1381 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1361/ %R 10.2140/gt.2015.19.1361 %F GT_2015_19_3_a5
Ito, Tetsuya; Wiest, Bertold. Lawrence–Krammer–Bigelow representations and dual Garside length of braids. Geometry & topology, Tome 19 (2015) no. 3, pp. 1361-1381. doi : 10.2140/gt.2015.19.1361. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1361/
[1] Braid groups are linear, J. Amer. Math. Soc. 14 (2001) 471
,[2] The Lawrence–Krammer representation, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 51
,[3] Homological representations of the Iwahori–Hecke algebra, from: "Proceedings of the Casson Fest" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7 (2004) 493
,[4] A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998) 322
, , ,[5] Erratum to “How to read the length of a braid from its curve diagram” [MR2813531], Groups Geom. Dyn. 7 (2013) 495
, ,[6] The braid group $B_4$ is linear, Invent. Math. 142 (2000) 451
,[7] Braid groups are linear, Ann. of Math. 155 (2002) 131
,[8] Homological representations of the Hecke algebra, Comm. Math. Phys. 135 (1990) 141
,[9] A note on the Lawrence–Krammer–Bigelow representation, Algebr. Geom. Topol. 2 (2002) 499
, ,[10] How to read the length of a braid from its curve diagram, Groups Geom. Dyn. 5 (2011) 673
,Cité par Sources :