A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications
Geometry & topology, Tome 19 (2015) no. 3, pp. 1287-1359.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the fifth in a series of papers on the ‘k–shifted symplectic derived algebraic geometry’ of Pantev, Toën, Vaquié and Vezzosi. We extend our earlier results from (derived) schemes to (derived) Artin stacks. We prove four main results:

(a) If (X,ωX) is a k–shifted symplectic derived Artin stack for k < 0, then near each x X we can find a ‘minimal’ smooth atlas φ: U X, such that (U,φ(ωX)) may be written explicitly in coordinates in a standard ‘Darboux form’.

(b) If (X,ωX) is a (1)–shifted symplectic derived Artin stack and X = t0(X) the classical Artin stack, then X extends to a ‘d–critical stack’ (X,s), as by Joyce.

(c) If (X,s) is an oriented d–critical stack, we define a natural perverse sheaf P̌X,s on X, such that whenever T is a scheme and t: T X is smooth of relative dimension n, T is locally modelled on a critical locus Crit(f : U A1), and t(P̌X,s)[n] is modelled on the perverse sheaf of vanishing cycles PVU,f of f.

(d) If (X,s) is a finite-type oriented d–critical stack, we can define a natural motive MFX,s in a ring of motives ¯Xst,μ̂ on X, such that if T is a scheme and t: T X is smooth of dimension n, then T is modelled on a critical locus Crit(f : U A1), and Ln2 t(MFX,s) is modelled on the motivic vanishing cycle MFU,fmot,ϕ of f.

Our results have applications to categorified and motivic extensions of Donaldson–Thomas theory of Calabi–Yau 3–folds.

DOI : 10.2140/gt.2015.19.1287
Classification : 14A20, 14F05, 14D23, 14N35, 32S30
Keywords: derived algebraic geometry, derived stack, shifted symplectic structure, perverse sheaf, vanishing cycles, motivic invariant, Calabi–Yau manifold, Donaldson–Thomas theory

Ben-Bassat, Oren 1 ; Brav, Christopher 2 ; Bussi, Vittoria 1 ; Joyce, Dominic 1

1 The Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
2 Institute for Advanced Study, Princeton University, Einstein Drive, Princeton, NJ 08540, USA
@article{GT_2015_19_3_a4,
     author = {Ben-Bassat, Oren and Brav, Christopher and Bussi, Vittoria and Joyce, Dominic},
     title = {A {{\textquoteleft}Darboux} theorem{\textquoteright} for shifted symplectic structures on derived {Artin} stacks, with applications},
     journal = {Geometry & topology},
     pages = {1287--1359},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     doi = {10.2140/gt.2015.19.1287},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1287/}
}
TY  - JOUR
AU  - Ben-Bassat, Oren
AU  - Brav, Christopher
AU  - Bussi, Vittoria
AU  - Joyce, Dominic
TI  - A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications
JO  - Geometry & topology
PY  - 2015
SP  - 1287
EP  - 1359
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1287/
DO  - 10.2140/gt.2015.19.1287
ID  - GT_2015_19_3_a4
ER  - 
%0 Journal Article
%A Ben-Bassat, Oren
%A Brav, Christopher
%A Bussi, Vittoria
%A Joyce, Dominic
%T A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications
%J Geometry & topology
%D 2015
%P 1287-1359
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1287/
%R 10.2140/gt.2015.19.1287
%F GT_2015_19_3_a4
Ben-Bassat, Oren; Brav, Christopher; Bussi, Vittoria; Joyce, Dominic. A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications. Geometry & topology, Tome 19 (2015) no. 3, pp. 1287-1359. doi : 10.2140/gt.2015.19.1287. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1287/

[1] A A Beĭlinson, J Bernstein, P Deligne, Faisceaux pervers, from: "Analysis and topology on singular spaces, I", Astérisque 100, Soc. Math. France (1982) 5

[2] E Bouaziz, I Grojnowski, A $d\!$–shifted Darboux theorem,

[3] C Brav, V Bussi, D Dupont, D Joyce, B Szendroi, Symmetries and stabilization for sheaves of vanishing cycles,

[4] C Brav, V Bussi, D Joyce, A ‘Darboux theorem’ for derived schemes with shifted symplectic structure,

[5] C Brav, V Bussi, S Meinhardt, On motivic vanishing cycles of critical loci,

[6] J Denef, F Loeser, Geometry on arc spaces of algebraic varieties, from: "European Congress of Math., Vol. I" (editors C Casacuberta, R M Miró-Roig, J Verdera, S Xambó-Descamps), Progr. Math. 201, Birkhäuser (2001) 327

[7] A Dimca, Sheaves in topology, Springer (2004)

[8] T Ekedahl, On the adic formalism, from: "The Grothendieck Festschrift, Vol. II" (editors P Cartier, L Illusie, N M Katz, G Laumon, K A Ribet), Progr. Math. 87, Birkhäuser (1990) 197

[9] E Freitag, R Kiehl, Étale cohomology and the Weil conjecture, Ergeb. Math. Grenzgeb. 13, Springer (1988)

[10] D Gaitsgory, N Rozenblyum, Crystals and $\mathscr{D}$–modules,

[11] R Hartshorne, Algebraic geometry, Graduate Texts in Math. 52, Springer (1977)

[12] H Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II, Ann. of Math. 79 (1964) 205

[13] D Joyce, Motivic invariants of Artin stacks and ‘stack functions’, Q. J. Math. 58 (2007) 345

[14] D Joyce, A classical model for derived critical loci,

[15] D Joyce, Y Song, A theory of generalized Donaldson–Thomas invariants, Mem. Amer. Math. Soc. 1020, Amer. Math. Soc. (2012)

[16] R Kiehl, R Weissauer, Weil conjectures, perverse sheaves and $l$–adic Fourier transform, Ergeb. Math. Grenzgeb. 42, Springer (2001)

[17] M Kontsevich, Y Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations,

[18] M Kontsevich, Y Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231

[19] A Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999) 495

[20] Y Laszlo, M Olsson, The six operations for sheaves on Artin stacks, I: Finite coefficients, Publ. Math. Inst. Hautes Études Sci. 107 (2008) 109

[21] Y Laszlo, M Olsson, The six operations for sheaves on Artin stacks, II: Adic coefficients, Publ. Math. Inst. Hautes Études Sci. 107 (2008) 169

[22] Y Laszlo, M Olsson, Perverse $t$–structure on Artin stacks, Math. Z. 261 (2009) 737

[23] G Laumon, L Moret-Bailly, Champs algébriques, Ergeb. Math. Grenzgeb. 39, Springer (2000)

[24] Y Liu, W Zheng, Enhanced six operations and base change theorem for Artin stacks,

[25] Y Liu, W Zheng, Enhanced adic formalism, biduality and perverse $t$–structures for higher Artin stacks, preprint (2012)

[26] E Looijenga, Motivic measures, from: "Séminaire Bourbaki, \rm1999/2000", Astérisque 276 (2002) 267

[27] M Olsson, Sheaves on Artin stacks, J. Reine Angew. Math. 603 (2007) 55

[28] T Pantev, B Toën, M Vaquié, G Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 271

[29] A G M Paulin, The Riemann–Hilbert correspondence for algebraic stacks,

[30] B Toën, Higher and derived stacks: a global overview, from: "Algebraic geometry" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 435

[31] B Toën, G Vezzosi, Homotopical algebraic geometry, II: Geometric stacks and applications, Mem. Amer. Math. Soc. 902, Amer. Math. Soc. (2008)

Cité par Sources :