G2–instantons over twisted connected sums
Geometry & topology, Tome 19 (2015) no. 3, pp. 1263-1285.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce a method to construct G2–instantons over compact G2–manifolds arising as the twisted connected sum of a matching pair of building blocks. Our construction is based on gluing G2–instantons obtained from holomorphic vector bundles over the building blocks via the first author’s work. We require natural compatibility and transversality conditions which can be interpreted in terms of certain Lagrangian subspaces of a moduli space of stable bundles on a K3 surface.

DOI : 10.2140/gt.2015.19.1263
Classification : 53C07, 53C25, 53C38
Keywords: gauge theory, $G_2$–manifolds, gluing, holomorphic bundles

Sá Earp, Henrique N 1 ; Walpuski, Thomas 2

1 Unicamp, Universidade Estadual de Campinas, 13083-859 São Paulo, Brazil
2 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
@article{GT_2015_19_3_a3,
     author = {S\'a Earp, Henrique N and Walpuski, Thomas},
     title = {G2{\textendash}instantons over twisted connected sums},
     journal = {Geometry & topology},
     pages = {1263--1285},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     doi = {10.2140/gt.2015.19.1263},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1263/}
}
TY  - JOUR
AU  - Sá Earp, Henrique N
AU  - Walpuski, Thomas
TI  - G2–instantons over twisted connected sums
JO  - Geometry & topology
PY  - 2015
SP  - 1263
EP  - 1285
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1263/
DO  - 10.2140/gt.2015.19.1263
ID  - GT_2015_19_3_a3
ER  - 
%0 Journal Article
%A Sá Earp, Henrique N
%A Walpuski, Thomas
%T G2–instantons over twisted connected sums
%J Geometry & topology
%D 2015
%P 1263-1285
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1263/
%R 10.2140/gt.2015.19.1263
%F GT_2015_19_3_a3
Sá Earp, Henrique N; Walpuski, Thomas. G2–instantons over twisted connected sums. Geometry & topology, Tome 19 (2015) no. 3, pp. 1263-1285. doi : 10.2140/gt.2015.19.1263. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1263/

[1] M Atiyah, New invariants of $3$– and $4$–dimensional manifolds, from: "The mathematical heritage of Hermann Weyl" (editor R O Wells Jr.), Proc. Sympos. Pure Math. 48, Amer. Math. Soc. (1988) 285

[2] A Corti, M Haskins, J Nordström, T Pacini, $\mathrm{G}_2$–manifolds and associative submanifolds via semi-Fano $3$–folds, (2012)

[3] A Corti, M Haskins, J Nordström, T Pacini, Asymptotically cylindrical Calabi–Yau $3$–folds from weak Fano $3$–folds, Geom. Topol. 17 (2013) 1955

[4] J P Demailly, Complex analytic and differential geometry

[5] S K Donaldson, Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1

[6] S K Donaldson, Floer homology groups in Yang–Mills theory, Cambridge Tracts in Math. 147, Cambridge Univ. Press (2002)

[7] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Univ. Press (1990)

[8] S Donaldson, E Segal, Gauge theory in higher dimensions, II, from: "Geometry of special holonomy and related topics" (editors N C Leung, S T Yau), Surv. Differ. Geom. 16, International Press (2011) 1

[9] S K Donaldson, R P Thomas, Gauge theory in higher dimensions, from: "The geometric universe" (editors S A Huggett, L J Mason, K P Tod, S T Tsou, N M J Woodhouse), Oxford Univ. Press (1998) 31

[10] H N S Earp, $\mathrm{G}_2$–instantons over asymptotically cylindrical manifolds, Geom. Topol. 19 (2015) 61

[11] P Griffiths, J Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley Sons (1994)

[12] M Haskins, H J Hein, J Nordström, Asymptotically cylindrical Calabi–Yau manifolds, (2014)

[13] D Huybrechts, M Lehn, The geometry of moduli spaces of sheaves, Aspects of Math. E31, Friedr. Vieweg Sohn (1997)

[14] D D Joyce, Compact Riemannian $7$–manifolds with holonomy $G_2$: I, II, J. Differential Geom. 43 (1996) 291, 329

[15] D D Joyce, Compact manifolds with special holonomy, Oxford Univ. Press (2000)

[16] A Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125

[17] A Kovalev, N H Lee, $K3$ surfaces with nonsymplectic involution and compact irreducible $\mathrm{G}_2$–manifolds, Math. Proc. Cambridge Philos. Soc. 151 (2011) 193

[18] R B Lockhart, R C Mcowen, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985) 409

[19] V G Mazja, B A Plamenevskiĭ, Estimates in $L_p$ and in Hölder classes, and the Miranda–Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary, Math. Nachr. 81 (1978) 25

[20] A Tyurin, Vector bundles, Univ. Göttingen (2008) 330

[21] K Uhlenbeck, S T Yau, On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986)

[22] T Walpuski, Gauge theory on $\mathrm{G}_2$–manifolds, PhD thesis, Imperial College London (2013)

[23] T Walpuski, $\mathrm{G}_2$–instantons on generalised Kummer constructions, Geom. Topol. 17 (2013) 2345

Cité par Sources :