Quasigeodesic flows and sphere-filling curves
Geometry & topology, Tome 19 (2015) no. 3, pp. 1249-1262.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a closed hyperbolic 3–manifold M with a quasigeodesic flow, we construct a π1–equivariant sphere-filling curve in the boundary of hyperbolic space. Specifically, we show that any complete transversal P to the lifted flow on 3 has a natural compactification to a closed disc that inherits a π1–action. The embedding P3 extends continuously to the compactification, and restricts to a surjective π1–equivariant map P 3 on the boundary. This generalizes the Cannon–Thurston theorem, which produces such group-invariant space-filling curves for fibered hyperbolic 3–manifolds.

DOI : 10.2140/gt.2015.19.1249
Classification : 57M60, 57M50, 37C27
Keywords: quasigeodesic flows, Cannon–Thurston, pseudo-Anosov flows

Frankel, Steven 1

1 Department of Mathematics, Yale University, PO Box 208283, New Haven, CT 06520-8283, USA
@article{GT_2015_19_3_a2,
     author = {Frankel, Steven},
     title = {Quasigeodesic flows and sphere-filling curves},
     journal = {Geometry & topology},
     pages = {1249--1262},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     doi = {10.2140/gt.2015.19.1249},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1249/}
}
TY  - JOUR
AU  - Frankel, Steven
TI  - Quasigeodesic flows and sphere-filling curves
JO  - Geometry & topology
PY  - 2015
SP  - 1249
EP  - 1262
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1249/
DO  - 10.2140/gt.2015.19.1249
ID  - GT_2015_19_3_a2
ER  - 
%0 Journal Article
%A Frankel, Steven
%T Quasigeodesic flows and sphere-filling curves
%J Geometry & topology
%D 2015
%P 1249-1262
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1249/
%R 10.2140/gt.2015.19.1249
%F GT_2015_19_3_a2
Frankel, Steven. Quasigeodesic flows and sphere-filling curves. Geometry & topology, Tome 19 (2015) no. 3, pp. 1249-1262. doi : 10.2140/gt.2015.19.1249. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1249/

[1] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)

[2] D Calegari, Universal circles for quasigeodesic flows, Geom. Topol. 10 (2006) 2271

[3] J W Cannon, W P Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007) 1315

[4] S Fenley, Ideal boundaries of pseudo-Anosov flows and uniform convergence groups with connections and applications to large scale geometry, Geom. Topol. 16 (2012) 1

[5] S Fenley, L Mosher, Quasigeodesic flows in hyperbolic $3$–manifolds, Topology 40 (2001) 503

[6] S Frankel, Quasigeodesic flows and Möbius-like groups, J. Differential Geom. 93 (2013) 401

[7] J Franks, A new proof of the Brouwer plane translation theorem, Ergodic Theory Dynam. Systems 12 (1992) 217

[8] J G Hocking, G S Young, Topology, Addison-Wesley Publ. (1961)

[9] R L Wilder, Topology of manifolds, AMS Colloq. Publ. 32, Amer. Math. Soc. (1963)

Cité par Sources :