A formula for the Θ–invariant from Heegaard diagrams
Geometry & topology, Tome 19 (2015) no. 3, pp. 1205-1248.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The Θ–invariant is the simplest 3–manifold invariant defined by configuration space integrals. It is actually an invariant of rational homology spheres equipped with a combing over the complement of a point. It can be computed as the algebraic intersection of three propagators associated to a given combing X in the 2–point configuration space of a –sphere M. These propagators represent the linking form of M so that Θ(M,X) can be thought of as the cube of the linking form of M with respect to the combing X. The invariant Θ is the sum of 6λ(M) and p1(X)4, where λ denotes the Casson–Walker invariant, and p1 is an invariant of combings, which is an extension of a first relative Pontrjagin class. In this article, we present explicit propagators associated with Heegaard diagrams of a manifold, and we use these “Morse propagators”, constructed with Greg Kuperberg, to prove a combinatorial formula for the Θ–invariant in terms of Heegaard diagrams.

DOI : 10.2140/gt.2015.19.1205
Classification : 57M27, 55R80, 57R20
Keywords: configuration space integrals, finite type invariants of $3$–manifolds, homology spheres, Heegaard splittings, Heegaard diagrams, combings, Casson–Walker invariant, perturbative expansion of Chern-Simons theory, $\Theta$–invariant

Lescop, Christine 1

1 Institut Fourier, Université de Grenoble, CNRS, 100 rue des maths, BP 74, 38402 Saint-Martin d’Hères cedex, France
@article{GT_2015_19_3_a1,
     author = {Lescop, Christine},
     title = {A formula for the {\ensuremath{\Theta}{\textendash}invariant} from {Heegaard} diagrams},
     journal = {Geometry & topology},
     pages = {1205--1248},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     doi = {10.2140/gt.2015.19.1205},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1205/}
}
TY  - JOUR
AU  - Lescop, Christine
TI  - A formula for the Θ–invariant from Heegaard diagrams
JO  - Geometry & topology
PY  - 2015
SP  - 1205
EP  - 1248
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1205/
DO  - 10.2140/gt.2015.19.1205
ID  - GT_2015_19_3_a1
ER  - 
%0 Journal Article
%A Lescop, Christine
%T A formula for the Θ–invariant from Heegaard diagrams
%J Geometry & topology
%D 2015
%P 1205-1248
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1205/
%R 10.2140/gt.2015.19.1205
%F GT_2015_19_3_a1
Lescop, Christine. A formula for the Θ–invariant from Heegaard diagrams. Geometry & topology, Tome 19 (2015) no. 3, pp. 1205-1248. doi : 10.2140/gt.2015.19.1205. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1205/

[1] S Akbulut, J D Mccarthy, Casson's invariant for oriented homology $3$–spheres, Math. Notes 36, Princeton Univ. Press (1990)

[2] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619

[3] L Guillou, A Marin, Notes sur l'invariant de Casson des sphères d'homologie de dimension trois, Enseign. Math. 38 (1992) 233

[4] M W Hirsch, Differential topology, Graduate Texts in Math. 33, Springer (1994)

[5] F E P Hirzebruch, Hilbert modular surfaces, Enseignement Math. 19 (1973) 183

[6] R Kirby, P Melvin, Canonical framings for $3$–manifolds, from: "Proceedings of $6^{\mathrm{th}}$ Gökova Geometry–Topology Conference", Turkish J. Math. 23 (1999) 89

[7] M Kontsevich, Feynman diagrams and low-dimensional topology, from: "First European Congress of Math., Vol. II" (editors A Joseph, F Mignot, F Murat, B Prum, R Rentschler), Progr. Math. 120, Birkhäuser (1994) 97

[8] G Kuperberg, D P Thurston, Perturbative $3$–manifold invariants by cut-and-paste topology,

[9] T T Q Le, J Murakami, T Ohtsuki, On a universal perturbative invariant of $3$–manifolds, Topology 37 (1998) 539

[10] C Lescop, A combinatorial definition of the $\Theta$–invariant from Heegaard diagrams,

[11] C Lescop, An introduction to finite type invariants of knots and $3$–manifolds defined by counting graph configurations,

[12] C Lescop, On the Kontsevich–Kuperberg–Thurston construction of a configuration-space invariant for rational homology $3$–spheres,

[13] C Lescop, Splitting formulae for the Kontsevich–Kuperberg–Thurston invariant of rational homology $3$–spheres,

[14] C Lescop, On homotopy invariants of combings of three-manifolds, Canadian J. Math. 67 (2015) 152

[15] A Marin, Un nouvel invariant pour les sphères d'homologie de dimension trois (d'après Casson), from: "Séminaire Bourbaki, \rm1987/88", Astérisque 161–162, Soc. Math. France (1988) 151

[16] K Walker, An extension of Casson's invariant, Annals of Math. Studies 126, Princeton Univ. Press (1992)

[17] T Watanabe, Higher order generalization of Fukaya's Morse homotopy invariant of $3$–manifolds, I: Invariants of homology $3$–spheres, (2012)

[18] E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351

Cité par Sources :