The homotopy type of spaces of locally convex curves in the sphere
Geometry & topology, Tome 19 (2015) no. 3, pp. 1155-1203.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A smooth curve γ: [0,1] S2 is locally convex if its geodesic curvature is positive at every point. J A Little showed that the space of all locally convex curves γ with γ(0) = γ(1) = e1 and γ(0) = γ(1) = e2 has three connected components 1,c, +1, 1,n. The space 1,c is known to be contractible. We prove that +1 and 1,n are homotopy equivalent to (ΩS3) S2 S6 S10 and (ΩS3) S4 S8 S12 , respectively. As a corollary, we deduce the homotopy type of the components of the space Free(S1, S2) of free curves γ: S1 S2 (ie curves with nonzero geodesic curvature). We also determine the homotopy type of the spaces Free([0,1], S2) with fixed initial and final frames.

DOI : 10.2140/gt.2015.19.1155
Classification : 53C42, 57N65, 34B05
Keywords: convex curves, topology in infinite dimension, periodic solutions of linear ODEs

Saldanha, Nicolau C 1

1 Departamento de Matemática, PUC-Rio, Rua Marquês de São Vicente, 225, Edifício Cardeal Leme, sala 862 - Gávea, 22451-900 Rio de Janeiro, Brazil
@article{GT_2015_19_3_a0,
     author = {Saldanha, Nicolau C},
     title = {The homotopy type of spaces of locally convex curves in the sphere},
     journal = {Geometry & topology},
     pages = {1155--1203},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     doi = {10.2140/gt.2015.19.1155},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1155/}
}
TY  - JOUR
AU  - Saldanha, Nicolau C
TI  - The homotopy type of spaces of locally convex curves in the sphere
JO  - Geometry & topology
PY  - 2015
SP  - 1155
EP  - 1203
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1155/
DO  - 10.2140/gt.2015.19.1155
ID  - GT_2015_19_3_a0
ER  - 
%0 Journal Article
%A Saldanha, Nicolau C
%T The homotopy type of spaces of locally convex curves in the sphere
%J Geometry & topology
%D 2015
%P 1155-1203
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1155/
%R 10.2140/gt.2015.19.1155
%F GT_2015_19_3_a0
Saldanha, Nicolau C. The homotopy type of spaces of locally convex curves in the sphere. Geometry & topology, Tome 19 (2015) no. 3, pp. 1155-1203. doi : 10.2140/gt.2015.19.1155. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1155/

[1] S S Anisov, Convex curves in $\mathbb{R}\mathrm{P}^n$, Tr. Mat. Inst. Steklova 221 (1998) 9

[2] V I Arnol’D, The geometry of spherical curves and quaternion algebra, Uspekhi Mat. Nauk 50 (1995) 3

[3] D Burghelea, D Henderson, Smoothings and homeomorphisms for Hilbert manifolds, Bull. Amer. Math. Soc. 76 (1970) 1261

[4] D Burghelea, N C Saldanha, C Tomei, Results on infinite-dimensional topology and applications to the structure of the critical set of nonlinear Sturm–Liouville operators, J. Differential Equations 188 (2003) 569

[5] D Burghelea, N C Saldanha, C Tomei, The topology of the monodromy map of a second order ODE, J. Differential Equations 227 (2006) 581

[6] D Burghelea, N C Saldanha, C Tomei, The geometry of the critical set of nonlinear periodic Sturm–Liouville operators, J. Differential Equations 246 (2009) 3380

[7] L A Dikiĭ, I M Gel’Fand, Fractional powers of operators, and Hamiltonian systems, Funkcional. Anal. i Priložen. 10 (1976) 13

[8] L A Dikiĭ, I M Gel’Fand, A family of Hamiltonian structures connected with integrable nonlinear differential equations, Akad. Nauk SSSR Inst. Prikl. Mat. Preprint (1978) 41

[9] Y Eliashberg, N Mishachev, Introduction to the h–principle, Graduate Studies in Mathematics 48, Amer. Math. Soc. (2002)

[10] W Fenchel, Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929) 238

[11] M Gromov, Partial differential relations, Ergeb. Math. Grenzgeb. 9, Springer, Berlin (1986)

[12] M W Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959) 242

[13] B A Khesin, V Y Ovsienko, Symplectic leaves of the Gel'fand–Dikiĭbrackets and homotopy classes of nonflattening curves, Funktsional. Anal. i Prilozhen. 24 (1990) 38

[14] B A Khesin, B Z Shapiro, Nondegenerate curves on $\mathbb{S}^2$ and orbit classification of the Zamolodchikov algebra, Comm. Math. Phys. 145 (1992) 357

[15] B A Khesin, B Z Shapiro, Homotopy classification of nondegenerate quasiperiodic curves on the $2$–sphere, from: "Geometric combinatorics" (editors R Živaljević, S Vrećica), Publ. Inst. Math. $($Beograd$)$ 66(80) (1999) 127

[16] S Levy, D Maxwell, T Munzner (Directors), Outside in, A K Peters, Ltd. (1995)

[17] J A Little, Nondegenerate homotopies of curves on the unit $2$–sphere, J. Differential Geometry 4 (1970) 339

[18] M Morse, The calculus of variations in the large, AMS Colloq. Publ. 18, Amer. Math. Soc. (1996)

[19] N C Saldanha, The homotopy and cohomology of spaces of locally convex curves in the sphere, I, (2009)

[20] N C Saldanha, The homotopy and cohomology of spaces of locally convex curves in the sphere, II, (2009)

[21] N C Saldanha, B Shapiro, Spaces of locally convex curves in $\mathbb S^n$ and combinatorics of the group $B^+_{n+1}$, J. Singul. 4 (2012) 1

[22] N C Saldanha, C Tomei, The topology of critical sets of some ordinary differential operators, from: "Contributions to nonlinear analysis" (editors T Cazenave, D Costa, O Lopes, R Manásevich, P Rabinowitz, B Ruf, C Tomei), Progr. Nonlinear Differential Equations Appl. 66, Birkhäuser, Basel (2006) 491

[23] N C Saldanha, P Zühlke, On the components of spaces of curves on the $2$–sphere with geodesic curvature in a prescribed interval, Internat. J. Math. 24 (2013) 1350101, 78

[24] B Z Shapiro, M Z Shapiro, On the number of connected components in the space of closed nondegenerate curves on $\mathbb{S}^n$, Bull. Amer. Math. Soc. 25 (1991) 75

[25] M Z Shapiro, The topology of the space of nondegenerate curves, Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993) 106

[26] S Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. 69 (1959) 327

[27] P Zühlke, Homotopies of curves on the $2$–sphere with geodesic curvature in a prescribed interval,

Cité par Sources :