Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A smooth curve is locally convex if its geodesic curvature is positive at every point. J A Little showed that the space of all locally convex curves with and has three connected components , , . The space is known to be contractible. We prove that and are homotopy equivalent to and , respectively. As a corollary, we deduce the homotopy type of the components of the space of free curves (ie curves with nonzero geodesic curvature). We also determine the homotopy type of the spaces with fixed initial and final frames.
Saldanha, Nicolau C 1
@article{GT_2015_19_3_a0, author = {Saldanha, Nicolau C}, title = {The homotopy type of spaces of locally convex curves in the sphere}, journal = {Geometry & topology}, pages = {1155--1203}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2015}, doi = {10.2140/gt.2015.19.1155}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1155/} }
TY - JOUR AU - Saldanha, Nicolau C TI - The homotopy type of spaces of locally convex curves in the sphere JO - Geometry & topology PY - 2015 SP - 1155 EP - 1203 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1155/ DO - 10.2140/gt.2015.19.1155 ID - GT_2015_19_3_a0 ER -
Saldanha, Nicolau C. The homotopy type of spaces of locally convex curves in the sphere. Geometry & topology, Tome 19 (2015) no. 3, pp. 1155-1203. doi : 10.2140/gt.2015.19.1155. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1155/
[1] Convex curves in $\mathbb{R}\mathrm{P}^n$, Tr. Mat. Inst. Steklova 221 (1998) 9
,[2] The geometry of spherical curves and quaternion algebra, Uspekhi Mat. Nauk 50 (1995) 3
,[3] Smoothings and homeomorphisms for Hilbert manifolds, Bull. Amer. Math. Soc. 76 (1970) 1261
, ,[4] Results on infinite-dimensional topology and applications to the structure of the critical set of nonlinear Sturm–Liouville operators, J. Differential Equations 188 (2003) 569
, , ,[5] The topology of the monodromy map of a second order ODE, J. Differential Equations 227 (2006) 581
, , ,[6] The geometry of the critical set of nonlinear periodic Sturm–Liouville operators, J. Differential Equations 246 (2009) 3380
, , ,[7] Fractional powers of operators, and Hamiltonian systems, Funkcional. Anal. i Priložen. 10 (1976) 13
, ,[8] A family of Hamiltonian structures connected with integrable nonlinear differential equations, Akad. Nauk SSSR Inst. Prikl. Mat. Preprint (1978) 41
, ,[9] Introduction to the h–principle, Graduate Studies in Mathematics 48, Amer. Math. Soc. (2002)
, ,[10] Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929) 238
,[11] Partial differential relations, Ergeb. Math. Grenzgeb. 9, Springer, Berlin (1986)
,[12] Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959) 242
,[13] Symplectic leaves of the Gel'fand–Dikiĭbrackets and homotopy classes of nonflattening curves, Funktsional. Anal. i Prilozhen. 24 (1990) 38
, ,[14] Nondegenerate curves on $\mathbb{S}^2$ and orbit classification of the Zamolodchikov algebra, Comm. Math. Phys. 145 (1992) 357
, ,[15] Homotopy classification of nondegenerate quasiperiodic curves on the $2$–sphere, from: "Geometric combinatorics" (editors R Živaljević, S Vrećica), Publ. Inst. Math. $($Beograd$)$ 66(80) (1999) 127
, ,[16] Outside in, A K Peters, Ltd. (1995)
, , ,[17] Nondegenerate homotopies of curves on the unit $2$–sphere, J. Differential Geometry 4 (1970) 339
,[18] The calculus of variations in the large, AMS Colloq. Publ. 18, Amer. Math. Soc. (1996)
,[19] The homotopy and cohomology of spaces of locally convex curves in the sphere, I, (2009)
,[20] The homotopy and cohomology of spaces of locally convex curves in the sphere, II, (2009)
,[21] Spaces of locally convex curves in $\mathbb S^n$ and combinatorics of the group $B^+_{n+1}$, J. Singul. 4 (2012) 1
, ,[22] The topology of critical sets of some ordinary differential operators, from: "Contributions to nonlinear analysis" (editors T Cazenave, D Costa, O Lopes, R Manásevich, P Rabinowitz, B Ruf, C Tomei), Progr. Nonlinear Differential Equations Appl. 66, Birkhäuser, Basel (2006) 491
, ,[23] On the components of spaces of curves on the $2$–sphere with geodesic curvature in a prescribed interval, Internat. J. Math. 24 (2013) 1350101, 78
, ,[24] On the number of connected components in the space of closed nondegenerate curves on $\mathbb{S}^n$, Bull. Amer. Math. Soc. 25 (1991) 75
, ,[25] The topology of the space of nondegenerate curves, Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993) 106
,[26] The classification of immersions of spheres in Euclidean spaces, Ann. of Math. 69 (1959) 327
,[27] Homotopies of curves on the $2$–sphere with geodesic curvature in a prescribed interval,
,Cité par Sources :