Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We determine the –graded Eilenberg–MacLane cohomology (with mod coefficients) of the real, infinite Grassmannians in the case . Possible connections to motivic characteristic classes of quadratic bundles are briefly discussed.
Dugger, Daniel 1
@article{GT_2015_19_1_a2, author = {Dugger, Daniel}, title = {Bigraded cohomology of {\ensuremath{\mathbb{Z}}\ensuremath{/}2{\textendash}equivariant} {Grassmannians}}, journal = {Geometry & topology}, pages = {113--170}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, doi = {10.2140/gt.2015.19.113}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.113/} }
Dugger, Daniel. Bigraded cohomology of ℤ∕2–equivariant Grassmannians. Geometry & topology, Tome 19 (2015) no. 1, pp. 113-170. doi : 10.2140/gt.2015.19.113. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.113/
[1] K–theory and reality, Quart. J. Math. Oxford Ser. 17 (1966) 367
,[2] K–theory, W. A. Benjamin (1967)
,[3] Lectures on Lie groups and Lie algebras, 32, Cambridge Univ. Press (1995)
, , ,[4] Operations in equivariant Z∕p–cohomology, Math. Proc. Cambridge Philos. Soc. 126 (1999) 521
,[5] Définition des classes de Stiefel–Whitney d’un module quadratique sur un corps de caractéristique différente de 2, C. R. Acad. Sci. Paris 255 (1962) 1366
,[6] An Atiyah–Hirzebruch spectral sequence for KR–theory, K–Theory 35 (2005) 213
,[7] The RO(G)–graded equivariant ordinary homology of G–cell complexes with even-dimensional cells for G = Z∕p, 794, Amer. Math. Soc. (2004)
, ,[8] Online encyclopedia of integer sequences (2012)
,[9] The mod-2 cohomology rings of symmetric groups, J. Topol. 5 (2012) 169
, , ,[10] The structure of Lie groups, Holden-Day (1965)
,[11] A freeness theorem for RO(Z∕2)–graded cohomology, Topology Appl. 157 (2010) 902
,[12] The RO(G)–graded Serre spectral sequence, Homology, Homotopy Appl. 12 (2010) 75
,[13] Equivariant homotopy and cohomology theory, 91, Amer. Math. Soc. (1996)
,[14] Algebraic K–theory and quadratic forms, Invent. Math. 9 (1969/1970) 318
,[15] A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999) 45
, ,[16] A minimal set of generators for the ring of multisymmetric functions, Ann. Inst. Fourier (Grenoble) 57 (2007) 1741
,[17] Equivariant local coefficients and the RO(G)–graded cohomology of classifying spaces, PhD thesis, The University of Chicago (2010)
,[18] Geometric topology : Localization, periodicity and Galois symmetry, 8, Springer (2005)
,[19] Geometric models for higher Grothendieck–Witt groups in A1–homotopy theory,
,Cité par Sources :