Bigraded cohomology of ℤ∕2–equivariant Grassmannians
Geometry & topology, Tome 19 (2015) no. 1, pp. 113-170.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We determine the RO(G)–graded Eilenberg–MacLane cohomology (with mod 2 coefficients) of the real, infinite Grassmannians in the case G = 2. Possible connections to motivic characteristic classes of quadratic bundles are briefly discussed.

DOI : 10.2140/gt.2015.19.113
Classification : 55N91, 55R40
Keywords: equivariant Grassmannian, equivariant characteristic classes

Dugger, Daniel 1

1 Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
@article{GT_2015_19_1_a2,
     author = {Dugger, Daniel},
     title = {Bigraded cohomology of {\ensuremath{\mathbb{Z}}\ensuremath{/}2{\textendash}equivariant} {Grassmannians}},
     journal = {Geometry & topology},
     pages = {113--170},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     doi = {10.2140/gt.2015.19.113},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.113/}
}
TY  - JOUR
AU  - Dugger, Daniel
TI  - Bigraded cohomology of ℤ∕2–equivariant Grassmannians
JO  - Geometry & topology
PY  - 2015
SP  - 113
EP  - 170
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.113/
DO  - 10.2140/gt.2015.19.113
ID  - GT_2015_19_1_a2
ER  - 
%0 Journal Article
%A Dugger, Daniel
%T Bigraded cohomology of ℤ∕2–equivariant Grassmannians
%J Geometry & topology
%D 2015
%P 113-170
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.113/
%R 10.2140/gt.2015.19.113
%F GT_2015_19_1_a2
Dugger, Daniel. Bigraded cohomology of ℤ∕2–equivariant Grassmannians. Geometry & topology, Tome 19 (2015) no. 1, pp. 113-170. doi : 10.2140/gt.2015.19.113. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.113/

[1] M F Atiyah, K–theory and reality, Quart. J. Math. Oxford Ser. 17 (1966) 367

[2] M F Atiyah, K–theory, W. A. Benjamin (1967)

[3] R Carter, G Segal, I Macdonald, Lectures on Lie groups and Lie algebras, 32, Cambridge Univ. Press (1995)

[4] J L Caruso, Operations in equivariant Z∕p–cohomology, Math. Proc. Cambridge Philos. Soc. 126 (1999) 521

[5] A Delzant, Définition des classes de Stiefel–Whitney d’un module quadratique sur un corps de caractéristique différente de 2, C. R. Acad. Sci. Paris 255 (1962) 1366

[6] D Dugger, An Atiyah–Hirzebruch spectral sequence for KR–theory, K–Theory 35 (2005) 213

[7] K K Ferland, L G Lewis Jr., The RO(G)–graded equivariant ordinary homology of G–cell complexes with even-dimensional cells for G = Z∕p, 794, Amer. Math. Soc. (2004)

[8] O Foundation, Online encyclopedia of integer sequences (2012)

[9] C Giusti, P Salvatore, D Sinha, The mod-2 cohomology rings of symmetric groups, J. Topol. 5 (2012) 169

[10] G Hochschild, The structure of Lie groups, Holden-Day (1965)

[11] W C Kronholm, A freeness theorem for RO(Z∕2)–graded cohomology, Topology Appl. 157 (2010) 902

[12] W C Kronholm, The RO(G)–graded Serre spectral sequence, Homology, Homotopy Appl. 12 (2010) 75

[13] J P May, Equivariant homotopy and cohomology theory, 91, Amer. Math. Soc. (1996)

[14] J Milnor, Algebraic K–theory and quadratic forms, Invent. Math. 9 (1969/1970) 318

[15] F Morel, V Voevodsky, A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999) 45

[16] D Rydh, A minimal set of generators for the ring of multisymmetric functions, Ann. Inst. Fourier (Grenoble) 57 (2007) 1741

[17] M E Shulman, Equivariant local coefficients and the RO(G)–graded cohomology of classifying spaces, PhD thesis, The University of Chicago (2010)

[18] D P Sullivan, Geometric topology : Localization, periodicity and Galois symmetry, 8, Springer (2005)

[19] G S Tripathi, Geometric models for higher Grothendieck–Witt groups in A1–homotopy theory,

Cité par Sources :