Digraphs and cycle polynomials for free-by-cyclic groups
Geometry & topology, Tome 19 (2015) no. 2, pp. 1111-1154.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let ϕ Out(Fn) be a free group outer automorphism that can be represented by an expanding, irreducible train-track map. The automorphism ϕ determines a free-by-cyclic group Γ = Fn ϕ and a homomorphism α H1(Γ; ). By work of Neumann, Bieri, Neumann and Strebel, and Dowdall, Kapovich and Leininger, α has an open cone neighborhood A in H1(Γ; ) whose integral points correspond to other fibrations of Γ whose associated outer automorphisms are themselves representable by expanding irreducible train-track maps. In this paper, we define an analog of McMullen’s Teichmüller polynomial that computes the dilatations of all outer automorphisms in A.

DOI : 10.2140/gt.2015.19.1111
Classification : 57M20
Keywords: fibrations, free-by-cyclic groups, generalizations of the Teichmüller polynomial

Algom-Kfir, Yael 1 ; Hironaka, Eriko 2 ; Rafi, Kasra 3

1 Mathematics Department, University of Haifa, Mount Carmel, Haifa 31905, Israel
2 Department of Mathematics, Florida State University, 208 Love Building, 1017 Academic Way, Tallahassee, FL 32301-4510, USA
3 Department of Mathematics, University of Toronto, Room 6290, 40 George Street, Toronto ON M5S 2E4, Canada
@article{GT_2015_19_2_a6,
     author = {Algom-Kfir, Yael and Hironaka, Eriko and Rafi, Kasra},
     title = {Digraphs and cycle polynomials for free-by-cyclic groups},
     journal = {Geometry & topology},
     pages = {1111--1154},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     doi = {10.2140/gt.2015.19.1111},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1111/}
}
TY  - JOUR
AU  - Algom-Kfir, Yael
AU  - Hironaka, Eriko
AU  - Rafi, Kasra
TI  - Digraphs and cycle polynomials for free-by-cyclic groups
JO  - Geometry & topology
PY  - 2015
SP  - 1111
EP  - 1154
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1111/
DO  - 10.2140/gt.2015.19.1111
ID  - GT_2015_19_2_a6
ER  - 
%0 Journal Article
%A Algom-Kfir, Yael
%A Hironaka, Eriko
%A Rafi, Kasra
%T Digraphs and cycle polynomials for free-by-cyclic groups
%J Geometry & topology
%D 2015
%P 1111-1154
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1111/
%R 10.2140/gt.2015.19.1111
%F GT_2015_19_2_a6
Algom-Kfir, Yael; Hironaka, Eriko; Rafi, Kasra. Digraphs and cycle polynomials for free-by-cyclic groups. Geometry & topology, Tome 19 (2015) no. 2, pp. 1111-1154. doi : 10.2140/gt.2015.19.1111. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1111/

[1] Y Algom-Kfir, K Rafi, Mapping tori of small dilatation irreducible train-track maps,

[2] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1

[3] R Bieri, W D Neumann, R Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987) 451

[4] P Brinkmann, Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000) 1071

[5] D Cvetković, P Rowlinson, The largest eigenvalue of a graph: A survey, Linear and Multilinear Alg. 28 (1990) 3

[6] S Dowdall, I Kapovich, C J Leininger, Dynamics on free-by-cyclic groups,

[7] S Dowdall, I Kapovich, C J Leininger, McMullen polynomials and Lipschitz flows for free-by-cyclic groups,

[8] D Fried, Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helv. 57 (1982) 237

[9] F R Gantmacher, The theory of matrices, Vol. $1$, $2$, Chelsea Publ. (1959)

[10] I Kapovich, Detecting quasiconvexity: Algorithmic aspects, from: "Geometric and computational perspectives on infinite groups" (editors G Baumslag, D Epstein, R Gilman, H Short, C Sims), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 25, Amer. Math. Soc. (1996) 91

[11] S Matsumoto, Topological entropy and Thurston's norm of atoroidal surface bundles over the circle, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 763

[12] C T Mcmullen, Polynomial invariants for fibered $3$–manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. 33 (2000) 519

[13] C T Mcmullen, The Alexander polynomial of a $3$–manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. 35 (2002) 153

[14] W D Neumann, Normal subgroups with infinite cyclic quotient, Math. Sci. 4 (1979) 143

[15] J R Stallings, Topology of finite graphs, Invent. Math. 71 (1983) 551

[16] W P Thurston, A norm for the homology of $3$–manifolds, Mem. Amer. Math. Soc. 339, Amer. Math. Soc. (1986) 99

Cité par Sources :