Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a free group outer automorphism that can be represented by an expanding, irreducible train-track map. The automorphism determines a free-by-cyclic group and a homomorphism . By work of Neumann, Bieri, Neumann and Strebel, and Dowdall, Kapovich and Leininger, has an open cone neighborhood in whose integral points correspond to other fibrations of whose associated outer automorphisms are themselves representable by expanding irreducible train-track maps. In this paper, we define an analog of McMullen’s Teichmüller polynomial that computes the dilatations of all outer automorphisms in .
Algom-Kfir, Yael 1 ; Hironaka, Eriko 2 ; Rafi, Kasra 3
@article{GT_2015_19_2_a6, author = {Algom-Kfir, Yael and Hironaka, Eriko and Rafi, Kasra}, title = {Digraphs and cycle polynomials for free-by-cyclic groups}, journal = {Geometry & topology}, pages = {1111--1154}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, doi = {10.2140/gt.2015.19.1111}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1111/} }
TY - JOUR AU - Algom-Kfir, Yael AU - Hironaka, Eriko AU - Rafi, Kasra TI - Digraphs and cycle polynomials for free-by-cyclic groups JO - Geometry & topology PY - 2015 SP - 1111 EP - 1154 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1111/ DO - 10.2140/gt.2015.19.1111 ID - GT_2015_19_2_a6 ER -
%0 Journal Article %A Algom-Kfir, Yael %A Hironaka, Eriko %A Rafi, Kasra %T Digraphs and cycle polynomials for free-by-cyclic groups %J Geometry & topology %D 2015 %P 1111-1154 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1111/ %R 10.2140/gt.2015.19.1111 %F GT_2015_19_2_a6
Algom-Kfir, Yael; Hironaka, Eriko; Rafi, Kasra. Digraphs and cycle polynomials for free-by-cyclic groups. Geometry & topology, Tome 19 (2015) no. 2, pp. 1111-1154. doi : 10.2140/gt.2015.19.1111. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1111/
[1] Mapping tori of small dilatation irreducible train-track maps,
, ,[2] Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1
, ,[3] A geometric invariant of discrete groups, Invent. Math. 90 (1987) 451
, , ,[4] Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000) 1071
,[5] The largest eigenvalue of a graph: A survey, Linear and Multilinear Alg. 28 (1990) 3
, ,[6] Dynamics on free-by-cyclic groups,
, , ,[7] McMullen polynomials and Lipschitz flows for free-by-cyclic groups,
, , ,[8] Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helv. 57 (1982) 237
,[9] The theory of matrices, Vol. $1$, $2$, Chelsea Publ. (1959)
,[10] Detecting quasiconvexity: Algorithmic aspects, from: "Geometric and computational perspectives on infinite groups" (editors G Baumslag, D Epstein, R Gilman, H Short, C Sims), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 25, Amer. Math. Soc. (1996) 91
,[11] Topological entropy and Thurston's norm of atoroidal surface bundles over the circle, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 763
,[12] Polynomial invariants for fibered $3$–manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. 33 (2000) 519
,[13] The Alexander polynomial of a $3$–manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. 35 (2002) 153
,[14] Normal subgroups with infinite cyclic quotient, Math. Sci. 4 (1979) 143
,[15] Topology of finite graphs, Invent. Math. 71 (1983) 551
,[16] A norm for the homology of $3$–manifolds, Mem. Amer. Math. Soc. 339, Amer. Math. Soc. (1986) 99
,Cité par Sources :