An infinite-rank summand of topologically slice knots
Geometry & topology, Tome 19 (2015) no. 2, pp. 1063-1110.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let CTS be the subgroup of the smooth knot concordance group generated by topologically slice knots. Endo showed that CTS contains an infinite-rank subgroup, and Livingston and Manolescu-Owens showed that CTS contains a 3 summand. We show that in fact CTS contains a summand. The proof relies on the knot Floer homology package of Ozsváth–Szabó and the concordance invariant ε.

DOI : 10.2140/gt.2015.19.1063
Classification : 57N70, 57R58, 57M25
Keywords: Heegaaard Floer homology, concordance

Hom, Jennifer 1

1 Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA
@article{GT_2015_19_2_a5,
     author = {Hom, Jennifer},
     title = {An infinite-rank summand of topologically slice knots},
     journal = {Geometry & topology},
     pages = {1063--1110},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     doi = {10.2140/gt.2015.19.1063},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1063/}
}
TY  - JOUR
AU  - Hom, Jennifer
TI  - An infinite-rank summand of topologically slice knots
JO  - Geometry & topology
PY  - 2015
SP  - 1063
EP  - 1110
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1063/
DO  - 10.2140/gt.2015.19.1063
ID  - GT_2015_19_2_a5
ER  - 
%0 Journal Article
%A Hom, Jennifer
%T An infinite-rank summand of topologically slice knots
%J Geometry & topology
%D 2015
%P 1063-1110
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1063/
%R 10.2140/gt.2015.19.1063
%F GT_2015_19_2_a5
Hom, Jennifer. An infinite-rank summand of topologically slice knots. Geometry & topology, Tome 19 (2015) no. 2, pp. 1063-1110. doi : 10.2140/gt.2015.19.1063. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1063/

[1] A J Casson, C M Gordon, On slice knots in dimension three, from: "Algebraic and geometric topology" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 39

[2] A J Casson, C M Gordon, Cobordism of classical knots, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 181

[3] A H Clifford, Note on Hahn's theorem on ordered abelian groups, Proc. Amer. Math. Soc. 5 (1954) 860

[4] T D Cochran, R E Gompf, Applications of Donaldson's theorems to classical knot concordance, homology $3$–spheres and property $P$, Topology 27 (1988) 495

[5] T D Cochran, K E Orr, P Teichner, Knot concordance, Whitney towers and $L^2$–signatures, Ann. of Math. 157 (2003) 433

[6] T D Cochran, K E Orr, P Teichner, Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004) 105

[7] T D Cochran, P Teichner, Knot concordance and von Neumann $\rho$–invariants, Duke Math. J. 137 (2007) 337

[8] S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279

[9] H Endo, Linear independence of topologically slice knots in the smooth cobordism group, Topology Appl. 63 (1995) 257

[10] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[11] R E Gompf, A I Stipsicz, $4$–manifolds and Kirby calculus, Graduate Studies in Math. 20, Amer. Math. Soc. (1999)

[12] H Hahn, Über die nicht archimedischen Grössensysteme, Sitz. der K. Akad. der Wiss., Math. Nat. Kl. 116 (1907) 601

[13] S Hancock, J Hom, M Newman, On the knot Floer filtration of the concordance group, J. Knot Theory Ramifications 22 (2013)

[14] M Hausner, J G Wendel, Ordered vector spaces, Proc. Amer. Math. Soc. 3 (1952) 977

[15] M Hedden, On knot Floer homology and cabling, II, Int. Math. Res. Not. 2009 (2009) 2248

[16] M Hedden, S G Kim, C Livingston, Topologically slice knots of smooth concordance order two, (2012)

[17] M Hedden, C Livingston, D Ruberman, Topologically slice knots with nontrivial Alexander polynomial, Adv. Math. 231 (2012) 913

[18] J Hom, A note on cabling and $L$–space surgeries, Algebr. Geom. Topol. 11 (2011) 219

[19] J Hom, Bordered Heegaard Floer homology and the tau-invariant of cable knots, J. Topol. 7 (2014) 287

[20] J Hom, The knot Floer complex and the smooth concordance group, Comment. Math. Helv. 89 (2014) 537

[21] B J Jiang, A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Amer. Math. Soc. 83 (1981) 189

[22] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359

[23] J Levine, Invariants of knot cobordism, Invent. Math. 8 (1969) 98

[24] J Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229

[25] R Lipshitz, P Ozsváth, D Thurston, Bordered Heegaard Floer homology: Invariance and pairing, (2011)

[26] C Livingston, Computations of the Ozsváth–Szabó knot concordance invariant, Geom. Topol. 8 (2004) 735

[27] C Livingston, Slice knots with distinct Ozsváth–Szabó and Rasmussen invariants, Proc. Amer. Math. Soc. 136 (2008) 347

[28] C Manolescu, B Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. 2007 (2007)

[29] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179

[30] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615

[31] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[32] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281

[33] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[34] J A Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419

[35] J P Tobin, Knot Floer filtration classes of topologically slice knots, J. Knot Theory Ramifications 23 (2014) 1450047, 30

Cité par Sources :