Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a version of the classical Runge and Mergelyan uniform approximation theorems for nonorientable minimal surfaces in Euclidean –space . Then we obtain some geometric applications. Among them, we emphasize the following ones:
Alarcón, Antonio 1 ; López, Francisco J 1
@article{GT_2015_19_2_a4, author = {Alarc\'on, Antonio and L\'opez, Francisco J}, title = {Approximation theory for nonorientable minimal surfaces and applications}, journal = {Geometry & topology}, pages = {1015--1062}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, doi = {10.2140/gt.2015.19.1015}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1015/} }
TY - JOUR AU - Alarcón, Antonio AU - López, Francisco J TI - Approximation theory for nonorientable minimal surfaces and applications JO - Geometry & topology PY - 2015 SP - 1015 EP - 1062 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1015/ DO - 10.2140/gt.2015.19.1015 ID - GT_2015_19_2_a4 ER -
%0 Journal Article %A Alarcón, Antonio %A López, Francisco J %T Approximation theory for nonorientable minimal surfaces and applications %J Geometry & topology %D 2015 %P 1015-1062 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1015/ %R 10.2140/gt.2015.19.1015 %F GT_2015_19_2_a4
Alarcón, Antonio; López, Francisco J. Approximation theory for nonorientable minimal surfaces and applications. Geometry & topology, Tome 19 (2015) no. 2, pp. 1015-1062. doi : 10.2140/gt.2015.19.1015. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1015/
[1] Complete minimal surfaces in $\mathbb R^3$ with a prescribed coordinate function, Differential Geom. Appl. 29 (2011)
, ,[2] Complete minimal surfaces and harmonic functions, Comment. Math. Helv. 87 (2012) 891
, , ,[3] Harmonic mappings and conformal minimal immersions of Riemann surfaces into $\mathbb{R}^\mathrm{N}$, Calc. Var. PDE 47 (2013) 227
, , ,[4] Null curves and directed immersions of open Riemann surfaces, Invent. Math. 196 (2014) 733
, ,[5] Gauss map of nonorientable minimal surfaces in $\mathbb{R}^n$, in preparation
, ,[6] Minimal surfaces in $\mathbb R^3$ properly projecting into $\mathbb{R}^2$, J. Differential Geom. 90 (2012) 351
, ,[7] Compact complete null curves in complex $3$–space, Israel J. Math. 195 (2013) 97
, ,[8] Null curves in $\mathbb{C}^3$ and Calabi–Yau conjectures, Math. Ann. 355 (2013) 429
, ,[9] Complete nonorientable minimal surfaces in $\mathbb {R}^3$ and asymptotic behavior, Anal. Geom. Metr. Spaces 2 (2014) 214
, ,[10] Properness of associated minimal surfaces, Trans. Amer. Math. Soc. 366 (2014) 5139
, ,[11] Subalgebras of functions on a Riemann surface, Pacific J. Math. 8 (1958) 29
,[12] One-sided minimal surfaces with a given boundary, Trans. Amer. Math. Soc. 34 (1932) 731
,[13] Riemann surfaces, Graduate Texts in Math. 71, Springer (1992)
, ,[14] Existence of proper minimal surfaces of arbitrary topological type, Adv. Math. 231 (2012) 378
, , ,[15] Lectures on Riemann surfaces, Graduate Texts in Math. 81, Springer (1981)
,[16] Stein manifolds and holomorphic mappings, Ergeb. Math. Grenzgeb. 56, Springer, Heidelberg (2011)
,[17] On the number of exceptional values of the Gauss maps of minimal surfaces, J. Math. Soc. Japan 40 (1988) 235
,[18] Immersion of open Riemann surfaces, Math. Ann. 174 (1967) 103
, ,[19] An introduction to complex analysis in several variables, North-Holland Math. Library 7, North-Holland (1990)
,[20] A complete minimal surface in $\mathbb{R}^{3}$ between two parallel planes, Ann. of Math. 112 (1980) 203
, ,[21] Holomorphic differentials on open Riemann surfaces, J. Math. Kyoto Univ. 11 (1971) 181
, ,[22] Beiträge zur Theorie der Minimalflächen, Math. Ann. 14 (1878) 331
,[23] A nonorientable complete minimal surface in $\mathbb{R}^3$ between two parallel planes, Proc. Amer. Math. Soc. 103 (1988) 913
,[24] Complete nonorientable minimal surfaces in a ball of $\mathbb R^3$, Trans. Amer. Math. Soc. 358 (2006) 3807
, , ,[25] On embedded complete minimal surfaces of genus zero, J. Differential Geom. 33 (1991) 293
, ,[26] Minimale Blätterzahl bei Überlagerungen Kleinscher Flächen über der projektiven Ebene, Arch. Math. $($Basel$)$ 30 (1978) 481
,[27] The classification of complete minimal surfaces in $\mathbb{ R}^{3}$ with total curvature greater than $-8\pi $, Duke Math. J. 48 (1981) 523
,[28] On the representation of functions by series of polynomials on closed sets, Doklady Akad. Nauk SSSR 78 (1951) 405
,[29] On the existence of a proper minimal surface in $\mathbb{R}^3$ with a conformal type of disk, Geom. Funct. Anal. 13 (2003) 1281
,[30] Hadamard's and Calabi–Yau's conjectures on negatively curved and minimal surfaces, Invent. Math. 126 (1996) 457
,[31] A survey of minimal surfaces, Dover Publ. (1986)
,[32] Zur Theorie der Analytischen Functionen, Acta Math. 6 (1885) 245
,[33] Lectures on harmonic maps, Conf. Proc. and Lecture Notes in Geom. and Topol. II, International Press (1997)
, ,Cité par Sources :