Approximation theory for nonorientable minimal surfaces and applications
Geometry & topology, Tome 19 (2015) no. 2, pp. 1015-1062.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a version of the classical Runge and Mergelyan uniform approximation theorems for nonorientable minimal surfaces in Euclidean 3–space 3. Then we obtain some geometric applications. Among them, we emphasize the following ones:

DOI : 10.2140/gt.2015.19.1015
Classification : 49Q05, 30E10
Keywords: nonorientable minimal surfaces, uniform approximation

Alarcón, Antonio 1 ; López, Francisco J 1

1 Departamento de Geometría y Topología, Universidad de Granada, E-18071 Granada, Spain
@article{GT_2015_19_2_a4,
     author = {Alarc\'on, Antonio and L\'opez, Francisco J},
     title = {Approximation theory for nonorientable minimal surfaces and applications},
     journal = {Geometry & topology},
     pages = {1015--1062},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     doi = {10.2140/gt.2015.19.1015},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1015/}
}
TY  - JOUR
AU  - Alarcón, Antonio
AU  - López, Francisco J
TI  - Approximation theory for nonorientable minimal surfaces and applications
JO  - Geometry & topology
PY  - 2015
SP  - 1015
EP  - 1062
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1015/
DO  - 10.2140/gt.2015.19.1015
ID  - GT_2015_19_2_a4
ER  - 
%0 Journal Article
%A Alarcón, Antonio
%A López, Francisco J
%T Approximation theory for nonorientable minimal surfaces and applications
%J Geometry & topology
%D 2015
%P 1015-1062
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1015/
%R 10.2140/gt.2015.19.1015
%F GT_2015_19_2_a4
Alarcón, Antonio; López, Francisco J. Approximation theory for nonorientable minimal surfaces and applications. Geometry & topology, Tome 19 (2015) no. 2, pp. 1015-1062. doi : 10.2140/gt.2015.19.1015. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1015/

[1] A Alarcón, I Fernández, Complete minimal surfaces in $\mathbb R^3$ with a prescribed coordinate function, Differential Geom. Appl. 29 (2011)

[2] A Alarcón, I Fernández, F J López, Complete minimal surfaces and harmonic functions, Comment. Math. Helv. 87 (2012) 891

[3] A Alarcón, I Fernández, F J López, Harmonic mappings and conformal minimal immersions of Riemann surfaces into $\mathbb{R}^\mathrm{N}$, Calc. Var. PDE 47 (2013) 227

[4] A Alarcón, F Forstnerič, Null curves and directed immersions of open Riemann surfaces, Invent. Math. 196 (2014) 733

[5] A Alarcón, F J López, Gauss map of nonorientable minimal surfaces in $\mathbb{R}^n$, in preparation

[6] A Alarcón, F J López, Minimal surfaces in $\mathbb R^3$ properly projecting into $\mathbb{R}^2$, J. Differential Geom. 90 (2012) 351

[7] A Alarcón, F J López, Compact complete null curves in complex $3$–space, Israel J. Math. 195 (2013) 97

[8] A Alarcón, F J López, Null curves in $\mathbb{C}^3$ and Calabi–Yau conjectures, Math. Ann. 355 (2013) 429

[9] A Alarcón, F J López, Complete nonorientable minimal surfaces in $\mathbb {R}^3$ and asymptotic behavior, Anal. Geom. Metr. Spaces 2 (2014) 214

[10] A Alarcón, F J López, Properness of associated minimal surfaces, Trans. Amer. Math. Soc. 366 (2014) 5139

[11] E Bishop, Subalgebras of functions on a Riemann surface, Pacific J. Math. 8 (1958) 29

[12] J Douglas, One-sided minimal surfaces with a given boundary, Trans. Amer. Math. Soc. 34 (1932) 731

[13] H M Farkas, I Kra, Riemann surfaces, Graduate Texts in Math. 71, Springer (1992)

[14] L Ferrer, F Martín, W H Meeks Iii, Existence of proper minimal surfaces of arbitrary topological type, Adv. Math. 231 (2012) 378

[15] O Forster, Lectures on Riemann surfaces, Graduate Texts in Math. 81, Springer (1981)

[16] F Forstnerič, Stein manifolds and holomorphic mappings, Ergeb. Math. Grenzgeb. 56, Springer, Heidelberg (2011)

[17] H Fujimoto, On the number of exceptional values of the Gauss maps of minimal surfaces, J. Math. Soc. Japan 40 (1988) 235

[18] R C Gunning, R Narasimhan, Immersion of open Riemann surfaces, Math. Ann. 174 (1967) 103

[19] L Hörmander, An introduction to complex analysis in several variables, North-Holland Math. Library 7, North-Holland (1990)

[20] L P D M Jorge, F Xavier, A complete minimal surface in $\mathbb{R}^{3}$ between two parallel planes, Ann. of Math. 112 (1980) 203

[21] Y Kusunoki, Y Sainouchi, Holomorphic differentials on open Riemann surfaces, J. Math. Kyoto Univ. 11 (1971) 181

[22] S Lie, Beiträge zur Theorie der Minimalflächen, Math. Ann. 14 (1878) 331

[23] F J López, A nonorientable complete minimal surface in $\mathbb{R}^3$ between two parallel planes, Proc. Amer. Math. Soc. 103 (1988) 913

[24] F J López, F Martin, S Morales, Complete nonorientable minimal surfaces in a ball of $\mathbb R^3$, Trans. Amer. Math. Soc. 358 (2006) 3807

[25] F J López, A Ros, On embedded complete minimal surfaces of genus zero, J. Differential Geom. 33 (1991) 293

[26] G Martens, Minimale Blätterzahl bei Überlagerungen Kleinscher Flächen über der projektiven Ebene, Arch. Math. $($Basel$)$ 30 (1978) 481

[27] W H Meeks Iii, The classification of complete minimal surfaces in $\mathbb{ R}^{3}$ with total curvature greater than $-8\pi $, Duke Math. J. 48 (1981) 523

[28] S N Mergelyan, On the representation of functions by series of polynomials on closed sets, Doklady Akad. Nauk SSSR 78 (1951) 405

[29] S Morales, On the existence of a proper minimal surface in $\mathbb{R}^3$ with a conformal type of disk, Geom. Funct. Anal. 13 (2003) 1281

[30] N Nadirashvili, Hadamard's and Calabi–Yau's conjectures on negatively curved and minimal surfaces, Invent. Math. 126 (1996) 457

[31] R Osserman, A survey of minimal surfaces, Dover Publ. (1986)

[32] C Runge, Zur Theorie der Analytischen Functionen, Acta Math. 6 (1885) 245

[33] R Schoen, S T Yau, Lectures on harmonic maps, Conf. Proc. and Lecture Notes in Geom. and Topol. II, International Press (1997)

Cité par Sources :