Totally twisted Khovanov homology
Geometry & topology, Tome 19 (2015) no. 1, pp. 1-59.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define a variation of Khovanov homology formally similar to totally twisted Heegaard–Floer homology. Over a certain field, this version of Khovanov homology has a completely explicit description in terms of the spanning trees of a link projection. We prove that this new theory is a link invariant and describe some of its properties. Finally, we provide the results of some computer computations of the invariant.

DOI : 10.2140/gt.2015.19.1
Classification : 57M27, 57M25
Keywords: Khovanov homology, spanning trees, knot homology

Roberts, Lawrence 1

1 Department of Mathematics, The University of Alabama, Box 820350, Tuscaloosa, AL 35487-0350, USA
@article{GT_2015_19_1_a0,
     author = {Roberts, Lawrence},
     title = {Totally twisted {Khovanov} homology},
     journal = {Geometry & topology},
     pages = {1--59},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     doi = {10.2140/gt.2015.19.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1/}
}
TY  - JOUR
AU  - Roberts, Lawrence
TI  - Totally twisted Khovanov homology
JO  - Geometry & topology
PY  - 2015
SP  - 1
EP  - 59
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1/
DO  - 10.2140/gt.2015.19.1
ID  - GT_2015_19_1_a0
ER  - 
%0 Journal Article
%A Roberts, Lawrence
%T Totally twisted Khovanov homology
%J Geometry & topology
%D 2015
%P 1-59
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1/
%R 10.2140/gt.2015.19.1
%F GT_2015_19_1_a0
Roberts, Lawrence. Totally twisted Khovanov homology. Geometry & topology, Tome 19 (2015) no. 1, pp. 1-59. doi : 10.2140/gt.2015.19.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1/

[1] J A Baldwin, On the spectral sequence from Khovanov homology to Heegaard Floer homology, Int. Math. Res. Not. 2011 (2011) 3426

[2] J A Baldwin, A S Levine, A combinatorial spanning tree model for knot Floer homology, Adv. Math. 231 (2012) 1886

[3] D Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337

[4] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443

[5] A Champanerkar, I Kofman, Spanning trees and Khovanov homology, Proc. Amer. Math. Soc. 137 (2009) 2157

[6] T C Jaeger, A remark on Roberts’ totally twisted Khovanov homology, J. Knot Theory Ramifications 22 (2013)

[7] L H Kauffman, On knots, 115, Princeton Univ. Press (1987)

[8] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359

[9] C Manolescu, P Ozsváth, On the Khovanov and knot Floer homologies of quasialternating links, from: "Proceedings of Gökova Geometry–Topology Conference 2007" (editors Akbulut, Selman, Önder, Turgut, S J.), GGT, Gökova (2008) 60

[10] H Matsumura, Commutative ring theory, 8, Cambridge Univ. Press (1989)

[11] J Rasmussen, Knot polynomials and knot homologies, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 261

[12] O Viro, Khovanov homology, its definitions and ramifications, Fund. Math. 184 (2004) 317

[13] S Wehrli, A spanning tree model for Khovanov homology, J. Knot Theory Ramifications 17 (2008) 1561

Cité par Sources :