Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define a variation of Khovanov homology formally similar to totally twisted Heegaard–Floer homology. Over a certain field, this version of Khovanov homology has a completely explicit description in terms of the spanning trees of a link projection. We prove that this new theory is a link invariant and describe some of its properties. Finally, we provide the results of some computer computations of the invariant.
Roberts, Lawrence 1
@article{GT_2015_19_1_a0, author = {Roberts, Lawrence}, title = {Totally twisted {Khovanov} homology}, journal = {Geometry & topology}, pages = {1--59}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, doi = {10.2140/gt.2015.19.1}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1/} }
Roberts, Lawrence. Totally twisted Khovanov homology. Geometry & topology, Tome 19 (2015) no. 1, pp. 1-59. doi : 10.2140/gt.2015.19.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.1/
[1] On the spectral sequence from Khovanov homology to Heegaard Floer homology, Int. Math. Res. Not. 2011 (2011) 3426
,[2] A combinatorial spanning tree model for knot Floer homology, Adv. Math. 231 (2012) 1886
, ,[3] On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337
,[4] Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443
,[5] Spanning trees and Khovanov homology, Proc. Amer. Math. Soc. 137 (2009) 2157
, ,[6] A remark on Roberts’ totally twisted Khovanov homology, J. Knot Theory Ramifications 22 (2013)
,[7] On knots, 115, Princeton Univ. Press (1987)
,[8] A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359
,[9] On the Khovanov and knot Floer homologies of quasialternating links, from: "Proceedings of Gökova Geometry–Topology Conference 2007" (editors Akbulut, Selman, Önder, Turgut, S J.), GGT, Gökova (2008) 60
, ,[10] Commutative ring theory, 8, Cambridge Univ. Press (1989)
,[11] Knot polynomials and knot homologies, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 261
,[12] Khovanov homology, its definitions and ramifications, Fund. Math. 184 (2004) 317
,[13] A spanning tree model for Khovanov homology, J. Knot Theory Ramifications 17 (2008) 1561
,Cité par Sources :