Grothendieck ring of semialgebraic formulas and motivic real Milnor fibers
Geometry & topology, Tome 18 (2014) no. 2, pp. 963-996.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define a Grothendieck ring for basic real semialgebraic formulas, that is, for systems of real algebraic equations and inequalities. In this ring the class of a formula takes into consideration the algebraic nature of the set of points satisfying this formula and this ring contains as a subring the usual Grothendieck ring of real algebraic formulas. We give a realization of our ring that allows us to express a class as a [1 2]–linear combination of classes of real algebraic formulas, so this realization gives rise to a notion of virtual Poincaré polynomial for basic semialgebraic formulas. We then define zeta functions with coefficients in our ring, built on semialgebraic formulas in arc spaces. We show that they are rational and relate them to the topology of real Milnor fibers.

DOI : 10.2140/gt.2014.18.963
Classification : 14P10, 14B05, 14P25
Keywords: Grothendieck ring, semialgebraic sets, motivic Milnor fiber

Comte, Georges 1 ; Fichou, Goulwen 2

1 Laboratoire de Mathématiques, Université de Savoie, UMR CNRS 5127, Bâtiment Chablais, Campus scientifique, 73376 Le Bourget-du-Lac, France
2 IRMAR, Université de Rennes 1, UMR CNRS 6625, Campus de Beaulieu, 35042 Rennes, France
@article{GT_2014_18_2_a9,
     author = {Comte, Georges and Fichou, Goulwen},
     title = {Grothendieck ring of semialgebraic formulas and motivic real {Milnor} fibers},
     journal = {Geometry & topology},
     pages = {963--996},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     doi = {10.2140/gt.2014.18.963},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.963/}
}
TY  - JOUR
AU  - Comte, Georges
AU  - Fichou, Goulwen
TI  - Grothendieck ring of semialgebraic formulas and motivic real Milnor fibers
JO  - Geometry & topology
PY  - 2014
SP  - 963
EP  - 996
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.963/
DO  - 10.2140/gt.2014.18.963
ID  - GT_2014_18_2_a9
ER  - 
%0 Journal Article
%A Comte, Georges
%A Fichou, Goulwen
%T Grothendieck ring of semialgebraic formulas and motivic real Milnor fibers
%J Geometry & topology
%D 2014
%P 963-996
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.963/
%R 10.2140/gt.2014.18.963
%F GT_2014_18_2_a9
Comte, Georges; Fichou, Goulwen. Grothendieck ring of semialgebraic formulas and motivic real Milnor fibers. Geometry & topology, Tome 18 (2014) no. 2, pp. 963-996. doi : 10.2140/gt.2014.18.963. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.963/

[1] N A’Campo, La fonction zêta d'une monodromie, Comment. Math. Helv. 50 (1975) 233

[2] V I Arnol’D, The index of a singular point of a vector field, the Petrovskiĭ–Oleĭnik inequalities, and mixed Hodge structures, Funkcional. Anal. i Priložen. 12 (1978) 1

[3] J Bochnak, M Coste, M F Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb. 36, Springer (1998)

[4] M Coste, Real algebraic sets, from: "Arc spaces and additive invariants in real algebraic and analytic geometry", Panor. Synthèses 24, Soc. Math. France (2007) 1

[5] J Denef, F Loeser, Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998) 505

[6] J Denef, F Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999) 201

[7] J Denef, F Loeser, Definable sets, motives and $p$–adic integrals, J. Amer. Math. Soc. 14 (2001) 429

[8] J Denef, F Loeser, Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology 41 (2002) 1031

[9] L Van Den Dries, Tame topology and o–minimal structures, London Mathematical Society Lecture Note Series 248, Cambridge Univ. Press (1998)

[10] G Fichou, Motivic invariants of arc-symmetric sets and blow-Nash equivalence, Compos. Math. 141 (2005) 655

[11] E Hrushovski, F Loeser, Monodromy and the Lefschetz fixed point formula,

[12] M Kontsevich, String cohomology, Lecture at Orsay, Paris (1995)

[13] K Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988) 445

[14] E Looijenga, Motivic measures, from: "Séminaire Bourbaki, $1999/2000$ (Exposé 874)", Astérisque 276, Soc. Math. France (2002) 267

[15] C Mccrory, A Parusiński, Virtual Betti numbers of real algebraic varieties, C. R. Math. Acad. Sci. Paris 336 (2003) 763

[16] C Mccrory, A Parusiński, The weight filtration for real algebraic varieties, from: "Topology of stratified spaces" (editors G Friedman, E Hunsicker, A Libgober, L Maxim), MSRI Publ. 58, Cambridge Univ. Press (2011) 121

[17] R Quarez, Espace des germes d'arcs réels et série de Poincaré d'un ensemble semi-algébrique, Ann. Inst. Fourier (Grenoble) 51 (2001) 43

[18] C T C Wall, Topological invariance of the Milnor number mod $2$, Topology 22 (1983) 345

Cité par Sources :