Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A Hermitian metric on a complex manifold is called SKT or pluriclosed if . Let be a twistor space of a compact, anti-selfdual Riemannian manifold, admitting a pluriclosed Hermitian metric. We prove that in this case is Kähler, hence isomorphic to or a flag space. This result is obtained from rational connectedness of the twistor space, due to F Campana. As an aside, we prove that the moduli space of rational curves on the twistor space of a surface is Stein.
Verbitsky, Misha 1
@article{GT_2014_18_2_a7, author = {Verbitsky, Misha}, title = {Rational curves and special metrics on twistor spaces}, journal = {Geometry & topology}, pages = {897--909}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2014}, doi = {10.2140/gt.2014.18.897}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.897/} }
Verbitsky, Misha. Rational curves and special metrics on twistor spaces. Geometry & topology, Tome 18 (2014) no. 2, pp. 897-909. doi : 10.2140/gt.2014.18.897. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.897/
[1] Some exact sequences in cohomology theory for Kähler manifolds, Pacific J. Math. 12 (1962) 791
,[2] Positive $\partial\bar\partial$–closed currents and non-Kähler geometry, J. Geom. Anal. 2 (1992) 291
, ,[3] Metric properties of manifolds bimeromorphic to compact Kähler spaces, J. Differential Geom. 37 (1993) 95
, ,[4] Holomorphic curves in symplectic geometry, Progress in Mathematics 117, Birkhäuser (1994)
, , editors,[5] Einstein manifolds, Ergeb. Math. Grenzgeb. 10, Springer (1987)
,[6] Algébricité et compacité dans les espaces de cycles, C. R. Acad. Sci. Paris Sér. A-B 289 (1979)
,[7] On twistor spaces of the class $\mathcal C$, J. Differential Geom. 33 (1991) 541
,[8] Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245
, , , ,[9] Applications of the theory of $L^2$ estimates and positive currents in algebraic geometry, lecture notes from the 2007 summer school in Grenoble, France.
,[10] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. 159 (2004) 1247
, ,[11] Tamed symplectic forms and generalized geometry, J. Geom. Phys. 71 (2013) 103
, , ,[12] Tamed symplectic forms and strong Kähler with torsion metrics, J. Symplectic Geom. 10 (2012) 203
, , ,[13] The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980) 47
, ,[14] La $1$–forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984) 495
,[15] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[16] An intrinsic characterization of Kähler manifolds, Invent. Math. 74 (1983) 169
, ,[17] Kählerian twistor spaces, Proc. London Math. Soc. 43 (1981) 133
,[18] Complex Plateau problem in non-Kähler manifolds, Ann. Polon. Math. 70 (1998) 131
,[19] Extension properties of meromorphic mappings with values in non-Kähler complex manifolds, Ann. of Math. 160 (2004) 795
,[20] Non-Hermitian Yang–Mills connections, Selecta Math. 4 (1998) 279
, ,[21] Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. 32, Springer (1996)
,[22] On the existence of special metrics in complex geometry, Acta Math. 149 (1982) 261
,[23] Hessian of the natural Hermitian form on twistor spaces
,[24] Telescopic actions, Geom. Funct. Anal. 22 (2012) 1814
, ,[25] Algebraicity criteria for compact complex manifolds, Math. Ann. 275 (1986) 653
,[26] Stability of strongly Gauduchon manifolds under modifications, J. Geom. Anal. 23 (2013) 653
,[27] Autour de la cohomologie de Bott–Chern
,[28] A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. IMRN (2010) 3101
, ,[29] The existence of anti-self-dual conformal structures, J. Differential Geom. 36 (1992) 163
,[30] A geometric condition for an lcK manifold to be Kähler, Geom. Dedicata 10 (1981) 129
,[31] Pseudoholomorphic Curves on Nearly Kähler Manifolds, Comm. Math. Phys. 324 (2013) 173
,Cité par Sources :