Rational curves and special metrics on twistor spaces
Geometry & topology, Tome 18 (2014) no. 2, pp. 897-909.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A Hermitian metric ω on a complex manifold is called SKT or pluriclosed if ddcω = 0. Let M be a twistor space of a compact, anti-selfdual Riemannian manifold, admitting a pluriclosed Hermitian metric. We prove that in this case M is Kähler, hence isomorphic to P3 or a flag space. This result is obtained from rational connectedness of the twistor space, due to F Campana. As an aside, we prove that the moduli space of rational curves on the twistor space of a K3 surface is Stein.

DOI : 10.2140/gt.2014.18.897
Classification : 53C28, 32Q15, 53C26
Keywords: twistor space, pluriclosed metric, K3 surface, SKT metric, rational connected variety, Moishezon variety, non-Kähler manifold

Verbitsky, Misha 1

1 Faculty of Mathematics, National Research University Higher School of Economics, Laboratory of Algebraic Geometry, 7 Vavilova Str., Moscow 117312, Russia
@article{GT_2014_18_2_a7,
     author = {Verbitsky, Misha},
     title = {Rational curves and special metrics on twistor spaces},
     journal = {Geometry & topology},
     pages = {897--909},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     doi = {10.2140/gt.2014.18.897},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.897/}
}
TY  - JOUR
AU  - Verbitsky, Misha
TI  - Rational curves and special metrics on twistor spaces
JO  - Geometry & topology
PY  - 2014
SP  - 897
EP  - 909
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.897/
DO  - 10.2140/gt.2014.18.897
ID  - GT_2014_18_2_a7
ER  - 
%0 Journal Article
%A Verbitsky, Misha
%T Rational curves and special metrics on twistor spaces
%J Geometry & topology
%D 2014
%P 897-909
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.897/
%R 10.2140/gt.2014.18.897
%F GT_2014_18_2_a7
Verbitsky, Misha. Rational curves and special metrics on twistor spaces. Geometry & topology, Tome 18 (2014) no. 2, pp. 897-909. doi : 10.2140/gt.2014.18.897. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.897/

[1] A Aeppli, Some exact sequences in cohomology theory for Kähler manifolds, Pacific J. Math. 12 (1962) 791

[2] L Alessandrini, G Bassanelli, Positive $\partial\bar\partial$–closed currents and non-Kähler geometry, J. Geom. Anal. 2 (1992) 291

[3] L Alessandrini, G Bassanelli, Metric properties of manifolds bimeromorphic to compact Kähler spaces, J. Differential Geom. 37 (1993) 95

[4] M Audin, J Lafontaine, editors, Holomorphic curves in symplectic geometry, Progress in Mathematics 117, Birkhäuser (1994)

[5] A L Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. 10, Springer (1987)

[6] F Campana, Algébricité et compacité dans les espaces de cycles, C. R. Acad. Sci. Paris Sér. A-B 289 (1979)

[7] F Campana, On twistor spaces of the class $\mathcal C$, J. Differential Geom. 33 (1991) 541

[8] P Deligne, P Griffiths, J Morgan, D Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245

[9] J P Demailly, Applications of the theory of $L^2$ estimates and positive currents in algebraic geometry, lecture notes from the 2007 summer school in Grenoble, France.

[10] J P Demailly, M Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. 159 (2004) 1247

[11] N Enrietti, A Fino, G Grantcharov, Tamed symplectic forms and generalized geometry, J. Geom. Phys. 71 (2013) 103

[12] N Enrietti, A Fino, L Vezzoni, Tamed symplectic forms and strong Kähler with torsion metrics, J. Symplectic Geom. 10 (2012) 203

[13] J E Fornæss, R Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980) 47

[14] P Gauduchon, La $1$–forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984) 495

[15] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[16] R Harvey, H B Lawson Jr., An intrinsic characterization of Kähler manifolds, Invent. Math. 74 (1983) 169

[17] N J Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. 43 (1981) 133

[18] S Ivashkovich, Complex Plateau problem in non-Kähler manifolds, Ann. Polon. Math. 70 (1998) 131

[19] S Ivashkovich, Extension properties of meromorphic mappings with values in non-Kähler complex manifolds, Ann. of Math. 160 (2004) 795

[20] D Kaledin, M Verbitsky, Non-Hermitian Yang–Mills connections, Selecta Math. 4 (1998) 279

[21] J Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. 32, Springer (1996)

[22] M L Michelsohn, On the existence of special metrics in complex geometry, Acta Math. 149 (1982) 261

[23] C Mourougane, Hessian of the natural Hermitian form on twistor spaces

[24] D Panov, A Petrunin, Telescopic actions, Geom. Funct. Anal. 22 (2012) 1814

[25] T Peternell, Algebraicity criteria for compact complex manifolds, Math. Ann. 275 (1986) 653

[26] D Popovici, Stability of strongly Gauduchon manifolds under modifications, J. Geom. Anal. 23 (2013) 653

[27] M Schweitzer, Autour de la cohomologie de Bott–Chern

[28] J Streets, G Tian, A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. IMRN (2010) 3101

[29] C H Taubes, The existence of anti-self-dual conformal structures, J. Differential Geom. 36 (1992) 163

[30] I Vaisman, A geometric condition for an lcK manifold to be Kähler, Geom. Dedicata 10 (1981) 129

[31] M Verbitsky, Pseudoholomorphic Curves on Nearly Kähler Manifolds, Comm. Math. Phys. 324 (2013) 173

Cité par Sources :