2–strand twisting and knots with identical quantum knot homologies
Geometry & topology, Tome 18 (2014) no. 2, pp. 873-895.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a knot, we ask how its Khovanov and Khovanov–Rozansky homologies change under the operation of introducing twists in a pair of strands. We obtain long exact sequences in homology and further algebraic structure which is then used to derive topological and computational results. Two of our applications include giving a way to generate arbitrary numbers of knots with isomorphic homologies and finding an infinite number of mutant knot pairs with isomorphic reduced homologies.

DOI : 10.2140/gt.2014.18.873
Classification : 57M25
Keywords: Khovanov–Rozansky, knots

Lobb, Andrew 1

1 Department of Mathematical Sciences, Durham University, Science Labs, South Road, Durham DH1 3LE, UK
@article{GT_2014_18_2_a6,
     author = {Lobb, Andrew},
     title = {2{\textendash}strand twisting and knots with identical quantum knot homologies},
     journal = {Geometry & topology},
     pages = {873--895},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     doi = {10.2140/gt.2014.18.873},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.873/}
}
TY  - JOUR
AU  - Lobb, Andrew
TI  - 2–strand twisting and knots with identical quantum knot homologies
JO  - Geometry & topology
PY  - 2014
SP  - 873
EP  - 895
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.873/
DO  - 10.2140/gt.2014.18.873
ID  - GT_2014_18_2_a6
ER  - 
%0 Journal Article
%A Lobb, Andrew
%T 2–strand twisting and knots with identical quantum knot homologies
%J Geometry & topology
%D 2014
%P 873-895
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.873/
%R 10.2140/gt.2014.18.873
%F GT_2014_18_2_a6
Lobb, Andrew. 2–strand twisting and knots with identical quantum knot homologies. Geometry & topology, Tome 18 (2014) no. 2, pp. 873-895. doi : 10.2140/gt.2014.18.873. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.873/

[1] S Cautis, Clasp technology to knot homology via the affine Grassmannian,

[2] B Gornik, Note on Khovanov link cohomology,

[3] M Hedden, P Ording, The Ozsváth–Szabó and Rasmussen concordance invariants are not equal, Amer. J. Math. 130 (2008) 441

[4] A Kawauchi, Introduction to topological imitations of $(3,1)$–dimensional manifold pairs, from: "Topics in knot theory" (editor M E Bozhüyük), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 399, Kluwer Acad. Publ. (1993) 69

[5] M Khovanov, L Rozansky, Virtual crossings, convolutions and a categorification of the $\mathrm{SO}(2N)$ Kauffman polynomial, J. Gökova Geom. Topol. GGT 1 (2007) 116

[6] M Khovanov, L Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1

[7] D Krasner, A computation in Khovanov–Rozansky homology, Fund. Math. 203 (2009) 75

[8] D Krasner, Equivariant $\mathrm{sl}(n)$–link homology, Algebr. Geom. Topol. 10 (2010) 1

[9] P B Kronheimer, T S Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. (2011) 97

[10] E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554

[11] C Livingston, Computations of the Ozsváth–Szabó knot concordance invariant, Geom. Topol. 8 (2004) 735

[12] A Lobb, A slice genus lower bound from $\mathrm{sl}(n)$ Khovanov–Rozansky homology, Adv. Math. 222 (2009) 1220

[13] A Lobb, A note on Gornik's perturbation of Khovanov–Rozansky homology, Algebr. Geom. Topol. 12 (2012) 293

[14] J Rasmussen, Some differentials on Khovanov–Rozansky homology,

[15] J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419

[16] L Rozansky, An infinite torus braid yields a categorified Jones–Wenzl projector,

[17] D Ruberman, Mutation and volumes of knots in $S^3$, Invent. Math. 90 (1987) 189

[18] T Soma, Simple links and tangles, Tokyo J. Math. 6 (1983) 65

[19] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)

[20] P Vaz, The reduced HOMFLY-PT homology for the Conway and the Kinoshita–Terasaka knots,

[21] H Wu, On the quantum filtration of the Khovanov–Rozansky cohomology, Adv. Math. 221 (2009) 54

Cité par Sources :