Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a knot, we ask how its Khovanov and Khovanov–Rozansky homologies change under the operation of introducing twists in a pair of strands. We obtain long exact sequences in homology and further algebraic structure which is then used to derive topological and computational results. Two of our applications include giving a way to generate arbitrary numbers of knots with isomorphic homologies and finding an infinite number of mutant knot pairs with isomorphic reduced homologies.
Lobb, Andrew 1
@article{GT_2014_18_2_a6, author = {Lobb, Andrew}, title = {2{\textendash}strand twisting and knots with identical quantum knot homologies}, journal = {Geometry & topology}, pages = {873--895}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2014}, doi = {10.2140/gt.2014.18.873}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.873/} }
Lobb, Andrew. 2–strand twisting and knots with identical quantum knot homologies. Geometry & topology, Tome 18 (2014) no. 2, pp. 873-895. doi : 10.2140/gt.2014.18.873. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.873/
[1] Clasp technology to knot homology via the affine Grassmannian,
,[2] Note on Khovanov link cohomology,
,[3] The Ozsváth–Szabó and Rasmussen concordance invariants are not equal, Amer. J. Math. 130 (2008) 441
, ,[4] Introduction to topological imitations of $(3,1)$–dimensional manifold pairs, from: "Topics in knot theory" (editor M E Bozhüyük), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 399, Kluwer Acad. Publ. (1993) 69
,[5] Virtual crossings, convolutions and a categorification of the $\mathrm{SO}(2N)$ Kauffman polynomial, J. Gökova Geom. Topol. GGT 1 (2007) 116
, ,[6] Matrix factorizations and link homology, Fund. Math. 199 (2008) 1
, ,[7] A computation in Khovanov–Rozansky homology, Fund. Math. 203 (2009) 75
,[8] Equivariant $\mathrm{sl}(n)$–link homology, Algebr. Geom. Topol. 10 (2010) 1
,[9] Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. (2011) 97
, ,[10] An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554
,[11] Computations of the Ozsváth–Szabó knot concordance invariant, Geom. Topol. 8 (2004) 735
,[12] A slice genus lower bound from $\mathrm{sl}(n)$ Khovanov–Rozansky homology, Adv. Math. 222 (2009) 1220
,[13] A note on Gornik's perturbation of Khovanov–Rozansky homology, Algebr. Geom. Topol. 12 (2012) 293
,[14] Some differentials on Khovanov–Rozansky homology,
,[15] Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419
,[16] An infinite torus braid yields a categorified Jones–Wenzl projector,
,[17] Mutation and volumes of knots in $S^3$, Invent. Math. 90 (1987) 189
,[18] Simple links and tangles, Tokyo J. Math. 6 (1983) 65
,[19] The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
,[20] The reduced HOMFLY-PT homology for the Conway and the Kinoshita–Terasaka knots,
,[21] On the quantum filtration of the Khovanov–Rozansky cohomology, Adv. Math. 221 (2009) 54
,Cité par Sources :