Large scale geometry of negatively curved ℝn ⋊ ℝ
Geometry & topology, Tome 18 (2014) no. 2, pp. 831-872.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We classify all negatively curved n up to quasi-isometry. We show that all quasi-isometries between such manifolds (except when they are bilipschitz to the real hyperbolic spaces) are almost similarities. We prove these results by studying the quasisymmetric maps on the ideal boundary of these manifolds.

DOI : 10.2140/gt.2014.18.831
Classification : 20F65, 30C65, 53C20
Keywords: quasiisometry, quasisymmetric map, negatively curved solvable Lie groups

Xie, Xiangdong 1

1 Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
@article{GT_2014_18_2_a5,
     author = {Xie, Xiangdong},
     title = {Large scale geometry of negatively curved {\ensuremath{\mathbb{R}}n} \ensuremath{\rtimes} {\ensuremath{\mathbb{R}}}},
     journal = {Geometry & topology},
     pages = {831--872},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     doi = {10.2140/gt.2014.18.831},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.831/}
}
TY  - JOUR
AU  - Xie, Xiangdong
TI  - Large scale geometry of negatively curved ℝn ⋊ ℝ
JO  - Geometry & topology
PY  - 2014
SP  - 831
EP  - 872
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.831/
DO  - 10.2140/gt.2014.18.831
ID  - GT_2014_18_2_a5
ER  - 
%0 Journal Article
%A Xie, Xiangdong
%T Large scale geometry of negatively curved ℝn ⋊ ℝ
%J Geometry & topology
%D 2014
%P 831-872
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.831/
%R 10.2140/gt.2014.18.831
%F GT_2014_18_2_a5
Xie, Xiangdong. Large scale geometry of negatively curved ℝn ⋊ ℝ. Geometry & topology, Tome 18 (2014) no. 2, pp. 831-872. doi : 10.2140/gt.2014.18.831. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.831/

[1] Z M Balogh, Hausdorff dimension distribution of quasiconformal mappings on the Heisenberg group, J. Anal. Math. 83 (2001) 289

[2] M Bonk, O Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266

[3] Y Conrulier, On the quasi-isometric classification of focal hyperbolic groups

[4] M Coornaert, T Delzant, A Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics 1441, Springer (1990)

[5] T Dymarz, Bijective quasi-isometries of amenable groups, from: "Geometric methods in group theory" (editors J Burillo, S Cleary, M Elder, J Taback, E Ventura), Contemp. Math. 372, Amer. Math. Soc. (2005) 181

[6] T Dymarz, I Peng, Bilipschitz maps of boundaries of certain negatively curved homogeneous spaces, Geom. Dedicata 152 (2011) 129

[7] A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs, Ann. of Math. 176 (2012) 221

[8] A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries II: Rigidity for Sol and lamplighter groups, Ann. of Math. 177 (2013) 869

[9] B Farb, L Mosher, On the asymptotic geometry of abelian-by-cyclic groups, Acta Math. 184 (2000) 145

[10] F W Gehring, J Väisälä, Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. 6 (1973) 504

[11] J Heinonen, Lectures on analysis on metric spaces, Universitext, Springer (2001)

[12] E Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974) 23

[13] B Kleiner, Unpublished notes

[14] P Pansu, Cohomologie $L^p$, espaces homogenes et pincement

[15] P Pansu, Dimension conforme et sphère à l'infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989) 177

[16] P Pansu, Métriques de Carnot–Carathéodory et quasi-isométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1

[17] F Paulin, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. 54 (1996) 50

[18] I Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups, I, Geom. Topol. 15 (2011) 1883

[19] I Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups, II, Geom. Topol. 15 (2011) 1927

[20] N Shanmugalingam, X Xie, A rigidity property of some negatively curved solvable Lie groups, Comment. Math. Helv. 87 (2012) 805

[21] J T Tyson, Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn. 5 (2001) 21

[22] X Xie, Quasisymmetric maps on the boundary of a negatively curved solvable Lie group, Math. Ann. 353 (2012) 727

Cité par Sources :