Orbifold points on Teichmüller curves and Jacobians with complex multiplication
Geometry & topology, Tome 18 (2014) no. 2, pp. 779-829.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For each integer D 5 with D 0 or 1 mod 4, the Weierstrass curve WD is an algebraic curve and a finite-volume hyperbolic orbifold which admits an algebraic and isometric immersion into the moduli space of genus two Riemann surfaces. The Weierstrass curves are the main examples of Teichmüller curves in genus two. The primary goal of this paper is to determine the number and type of orbifold points on each component of WD. Our enumeration of the orbifold points, together with Bainbridge [Geom. Topol. 11 (2007) 1887–2073] and McMullen [Math. Ann. 333 (2005) 87–130], completes the determination of the homeomorphism type of WD and gives a formula for the genus of its components. We use our formula to give bounds on the genus of WD and determine the Weierstrass curves of genus zero. We will also give several explicit descriptions of each surface labeled by an orbifold point on WD.

DOI : 10.2140/gt.2014.18.779
Classification : 32G15, 14K22
Keywords: Teichmueller curves, Jacobians, Hilbert modular surfaces

Mukamel, Ronen E 1

1 Department of Mathematics, University of Chicago, Chicago, IL 60637, USA
@article{GT_2014_18_2_a4,
     author = {Mukamel, Ronen E},
     title = {Orbifold points on {Teichm\"uller} curves and {Jacobians} with complex multiplication},
     journal = {Geometry & topology},
     pages = {779--829},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     doi = {10.2140/gt.2014.18.779},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.779/}
}
TY  - JOUR
AU  - Mukamel, Ronen E
TI  - Orbifold points on Teichmüller curves and Jacobians with complex multiplication
JO  - Geometry & topology
PY  - 2014
SP  - 779
EP  - 829
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.779/
DO  - 10.2140/gt.2014.18.779
ID  - GT_2014_18_2_a4
ER  - 
%0 Journal Article
%A Mukamel, Ronen E
%T Orbifold points on Teichmüller curves and Jacobians with complex multiplication
%J Geometry & topology
%D 2014
%P 779-829
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.779/
%R 10.2140/gt.2014.18.779
%F GT_2014_18_2_a4
Mukamel, Ronen E. Orbifold points on Teichmüller curves and Jacobians with complex multiplication. Geometry & topology, Tome 18 (2014) no. 2, pp. 779-829. doi : 10.2140/gt.2014.18.779. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.779/

[1] M F Atiyah, Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. 4 (1971) 47

[2] M Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol. 11 (2007) 1887

[3] M Bainbridge, M Möller, Deligne–Mumford compactification of the real multiplication locus and Teichmüller curves in genus three

[4] C Birkenhake, H Lange, Complex abelian varieties, Grundl. Math. Wissen. 302, Springer (2004)

[5] O Bolza, On binary sextics with linear transformations into themselves, Amer. J. Math. 10 (1887) 47

[6] I I Bouw, M Möller, Differential equations associated with nonarithmetic Fuchsian groups, J. Lond. Math. Soc. 81 (2010) 65

[7] I I Bouw, M Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. 172 (2010) 139

[8] J H Bruinier, Hilbert modular forms and their applications, from: "The 1–2–3 of modular forms" (editor K Ranestad), Springer (2008) 105

[9] K Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17 (2004) 871

[10] G Van Der Geer, Hilbert modular surfaces, Ergeb. Math. Grenzgeb. 16, Springer (1988)

[11] S Kerckhoff, H Masur, J Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. 124 (1986) 293

[12] B Klinger, A Yafaev, The André–Oort conjecture

[13] M Kontsevich, A Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631

[14] S Lang, Elliptic functions, Graduate Texts in Mathematics 112, Springer (1987)

[15] P Lochak, On arithmetic curves in the moduli spaces of curves, J. Inst. Math. Jussieu 4 (2005) 443

[16] J I Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972) 19

[17] H Masur, S Tabachnikov, Rational billiards and flat structures, from: "Handbook of dynamical systems, Vol. 1A" (editors B Hasselblatt, A Katok), North-Holland (2002) 1015

[18] C T Mcmullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003) 857

[19] C T Mcmullen, Teichmüller curves in genus two: Discriminant and spin, Math. Ann. 333 (2005) 87

[20] C T Mcmullen, Teichmüller curves in genus two: Torsion divisors and ratios of sines, Invent. Math. 165 (2006) 651

[21] C T Mcmullen, Dynamics of $\mathrm{SL}_2(\mathbb R)$ over moduli space in genus two, Ann. of Math. 165 (2007) 397

[22] M Möller, Shimura and Teichmüller curves, J. Mod. Dyn. 5 (2011) 1

[23] A Prestel, Die elliptischen Fixpunkte der Hilbertschen Modulgruppen, Math. Ann. 177 (1968) 181

[24] G Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math. 78 (1963) 149

[25] G Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Math. Series 46, Princeton Univ. Press (1998)

[26] R Silhol, Genus $2$ translation surfaces with an order $4$ automorphism, from: "The geometry of Riemann surfaces and abelian varieties" (editors J M Muñoz Porras, S Popescu, R E Rodríguez), Contemp. Math. 397, Amer. Math. Soc. (2006) 207

[27] J H Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics 151, Springer (1994)

[28] J Tits, Le Monstre (d'après R Griess, B Fischer et al), from: "Seminar Bourbaki, Vol. 1983/84", Astérisque 121-122, Soc. Math. France (1985) 105

[29] W A Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989) 553

[30] A Zorich, Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437

Cité par Sources :