Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a rational homology sphere plumbed –manifold associated with a connected negative-definite plumbing graph. We show that its Seiberg–Witten invariants equal certain coefficients of an equivariant multivariable Ehrhart polynomial. For this, we construct the corresponding polytope from the plumbing graph together with an action of and we develop Ehrhart theory for them. At an intermediate level we define the ‘periodic constant’ of multivariable series and establish their properties. In this way, one identifies the Seiberg–Witten invariant of a plumbed –manifold, the periodic constant of its ‘combinatorial zeta function’ and a coefficient of the associated Ehrhart polynomial. We make detailed presentations for graphs with at most two nodes. The two node case has surprising connections with the theory of affine monoids of rank two.
László, Tamás 1 ; Némethi, András 2
@article{GT_2014_18_2_a3, author = {L\'aszl\'o, Tam\'as and N\'emethi, Andr\'as}, title = {Ehrhart theory of polytopes and {Seiberg{\textendash}Witten} invariants of plumbed 3{\textendash}manifolds}, journal = {Geometry & topology}, pages = {717--778}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2014}, doi = {10.2140/gt.2014.18.717}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.717/} }
TY - JOUR AU - László, Tamás AU - Némethi, András TI - Ehrhart theory of polytopes and Seiberg–Witten invariants of plumbed 3–manifolds JO - Geometry & topology PY - 2014 SP - 717 EP - 778 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.717/ DO - 10.2140/gt.2014.18.717 ID - GT_2014_18_2_a3 ER -
%0 Journal Article %A László, Tamás %A Némethi, András %T Ehrhart theory of polytopes and Seiberg–Witten invariants of plumbed 3–manifolds %J Geometry & topology %D 2014 %P 717-778 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.717/ %R 10.2140/gt.2014.18.717 %F GT_2014_18_2_a3
László, Tamás; Némethi, András. Ehrhart theory of polytopes and Seiberg–Witten invariants of plumbed 3–manifolds. Geometry & topology, Tome 18 (2014) no. 2, pp. 717-778. doi : 10.2140/gt.2014.18.717. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.717/
[1] Singularities of differentiable maps, Vol. 2: Monodromy and asymptotics of integrals, Springer (2012)
, , ,[2] Computing the Ehrhart polynomial of a convex lattice polytope, Discrete Comput. Geom. 12 (1994) 35
,[3] An algorithmic theory of lattice points in polyhedra, from: "New perspectives in algebraic combinatorics" (editors L J Billera, A Björner, C Greene, R E Simion, R P Stanley), MSRI Publ. 38, Cambridge Univ. Press (1999) 91
, ,[4] A closer look at lattice points in rational simplices, Electron. J. Combin. 6 (1999) 9
,[5] Multidimensional Ehrhart reciprocity, J. Combin. Theory Ser. A 97 (2002) 187
,[6] The partial-fractions method for counting solutions to integral linear systems, Discrete Comput. Geom. 32 (2004) 437
,[7] The Frobenius problem, rational polytopes, and Fourier–Dedekind sums, J. Number Theory 96 (2002) 1
, , ,[8] Explicit and efficient formulas for the lattice point count in rational polygons using Dedekind–Rademacher sums, Discrete Comput. Geom. 27 (2002) 443
, ,[9] Computing the continuous discretely: Integer–point enumeration in polyhedra, Undergrad. Texts Math. 128, Springer (2007)
, ,[10] Invariants of Newton non-degenerate surface singularities, Compos. Math. 143 (2007) 1003
, ,[11] Surgery formula for Seiberg–Witten invariants of negative definite plumbed $3$–manifolds, J. Reine Angew. Math. 638 (2010) 189
, ,[12] Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10 (1997) 797
, ,[13] Polytopes, rings, and $K\!$–theory, Springer Monographs in Mathematics, Springer (2009)
, ,[14] Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge Univ. Press (1993)
, ,[15] Poincaré series of a rational surface singularity, Invent. Math. 155 (2004) 41
, , ,[16] Genera of algebraic varieties and counting of lattice points, Bull. Amer. Math. Soc. 30 (1994) 62
, ,[17] Parametric analysis of polyhedral iteration spaces, Journal of VLSI signal processing systems 19 (1998) 179
, ,[18] Poincaré series of resolutions of surface singularities, Trans. Amer. Math. Soc. 356 (2004) 1833
, , ,[19] The Ehrhart polynomial of a lattice polytope, Ann. of Math. 145 (1997) 503
, ,[20] On the link space of a Gorenstein quasihomogeneous surface singularity, Math. Ann. 265 (1983) 529
,[21] The signature of smoothings of complex surface singularities, Math. Ann. 232 (1978) 85
,[22] Three-dimensional link theory and invariants of plane curve singularities, Annals Math. Studies 110, Princeton Univ. Press (1985)
, ,[23] $4$–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, Amer. Math. Soc. (1999)
, ,[24] On graded rings. I, J. Math. Soc. Japan 30 (1978) 179
, ,[25] Universal abelian covers of rational surface singularities, and multi-index filtrations, Funktsional. Anal. i Prilozhen. 42 (2008) 3
, , ,[26] Une application du théorème de Riemann–Roch combinatoire au polynôme d'Ehrhart des polytopes entiers de $\mathbf{R}^d$, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 501
, ,[27] Global surgery formula for the Casson–Walker invariant, Annals Math. Studies 140, Princeton Univ. Press (1996)
,[28] Seiberg–Witten and Casson-Walker invariants for rational homology $3$–spheres, from: "Proceedings of the Euroconference on Partial Differential Equations and their Applications to Geometry and Physics", Geom. Dedicata 91 (2002) 45
, ,[29] Lattice invariant valuations on rational polytopes, Arch. Math. $($Basel$)$ 31 (1978/79) 509
,[30] Conditions d'adjonction, d'après du val, from: "Séminaire sur les Singularitiés des Surfaces" (editors M Demazure, H C Pinkham, B Teissier), Lecture Notes in Mathematics 777, Springer Berlin Heidelberg (1980) 229
, ,[31] Line bundles associated with normal surface singularities
,[32] Five lectures on normal surface singularities, from: "Low-dimensional topology" (editors K Böröczky Jr., W Neumann, A Stipsicz), Bolyai Soc. Math. Stud. 8, János Bolyai Math. Soc. (1999) 269
,[33] On the Ozsváth–Szabó invariant of negative definite plumbed $3$–manifolds, Geom. Topol. 9 (2005) 991
,[34] Graded roots and singularities, from: "Singularities in geometry and topology" (editors J P Brasselet, J Damon, M Oka), World Sci. Publ., Hackensack, NJ (2007) 394
,[35] Lattice cohomology of normal surface singularities, Publ. Res. Inst. Math. Sci. 44 (2008) 507
,[36] Poincaré series associated with surface singularities, from: "Singularities I" (editors J P Brasselet, J L Cisneros-Molina, D Massey, J Seade, B Teissier), Contemp. Math. 474, Amer. Math. Soc. (2008) 271
,[37] The Seiberg–Witten invariants of negative definite plumbed $3$–manifolds, J. Eur. Math. Soc. $($JEMS$)$ 13 (2011) 959
,[38] Two exact sequences for lattice cohomology, from: "Noncommutative geometry and global analysis", Contemp. Math. 546, Amer. Math. Soc. (2011) 249
,[39] The cohomology of line bundles of splice-quotient singularities, Adv. Math. 229 (2012) 2503
,[40] Seiberg–Witten invariants and surface singularities, Geom. Topol. 6 (2002) 269
, ,[41] Seiberg–Witten invariants and surface singularities, II: Singularities with good $\mathbb{C}^*$–action, J. London Math. Soc. 69 (2004) 593
, ,[42] The Seiberg–Witten invariant conjecture for splice-quotients, J. Lond. Math. Soc. 78 (2008) 143
, ,[43] On the Casson invariant conjecture of Neumann–Wahl, J. Algebraic Geom. 18 (2009) 135
, ,[44] The embedding dimension of weighted homogeneous surface singularities, J. Topol. 3 (2010) 643
, ,[45] The lattice cohomology of $S_{-d}^3(K)$, from: "Zeta functions in algebra and geometry" (editors A Campillo, G Cardona, A Melle-Hernández, W Veys), Contemp. Math. 566, Amer. Math. Soc. (2012) 261
, ,[46] Abelian covers of quasihomogeneous surface singularities, from: "Singularities, Part 2" (editor P Orlik), Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 233
,[47] Casson invariant of links of singularities, Comment. Math. Helv. 65 (1990) 58
, ,[48] Complete intersection singularities of splice type as universal abelian covers, Geom. Topol. 9 (2005) 699
, ,[49] Seiberg–Witten invariants of rational homology $3$–spheres, Commun. Contemp. Math. 6 (2004) 833
,[50] The geometric genus of splice-quotient singularities, Trans. Amer. Math. Soc. 360 (2008) 6643
,[51] On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185
, ,[52] Holomorphic disks and three-manifold invariants: Properties and applications, Ann. of Math. 159 (2004) 1159
, ,[53] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027
, ,[54] Normal surface singularities with $C^*$ action, Math. Ann. 227 (1977) 183
,[55] Problems and theorems in analysis, I: Series, integral calculus, theory of functions, Springer (1998)
, ,[56] Toric varieties, lattice points and Dedekind sums, Math. Ann. 295 (1993) 1
,[57] A surgery formula for renormalized Euler characteristic of Heegaard Floer homology
,[58] Combinatorial reciprocity theorems, Advances in Math. 14 (1974) 194
,[59] On vector partition functions, J. Combin. Theory Ser. A 72 (1995) 302
,[60] Residue formulae for vector partitions and Euler–MacLaurin sums, Adv. in Appl. Math. 30 (2003) 295
, ,[61] The structure of quasihomogeneous singularities, from: "Singularities, Part 2" (editor P Orlik), Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 593
,Cité par Sources :