Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give a definition of angles on the Gromov–Hausdorff limit space of a sequence of complete –dimensional Riemannian manifolds with a lower Ricci curvature bound. We apply this to prove there is a weakly second-order differential structure on these spaces and prove that they admit a unique Levi-Civita connection, allowing us to define the Hessian of a twice differentiable function.
Honda, Shouhei 1
@article{GT_2014_18_2_a1, author = {Honda, Shouhei}, title = {A weakly second-order differential structure on rectifiable metric measure spaces}, journal = {Geometry & topology}, pages = {633--668}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2014}, doi = {10.2140/gt.2014.18.633}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.633/} }
TY - JOUR AU - Honda, Shouhei TI - A weakly second-order differential structure on rectifiable metric measure spaces JO - Geometry & topology PY - 2014 SP - 633 EP - 668 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.633/ DO - 10.2140/gt.2014.18.633 ID - GT_2014_18_2_a1 ER -
Honda, Shouhei. A weakly second-order differential structure on rectifiable metric measure spaces. Geometry & topology, Tome 18 (2014) no. 2, pp. 633-668. doi : 10.2140/gt.2014.18.633. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.633/
[1] Currents in metric spaces, Acta Math. 185 (2000) 1
, ,[2] A D Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3
, , ,[3] Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428
,[4] Degeneration of Riemannian metrics under Ricci curvature bounds, Lezioni Fermiane, Scuola Normale Superiore (2001)
,[5] Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. 144 (1996) 189
, ,[6] On the structure of spaces with Ricci curvature bounded below, I, J. Differential Geom. 46 (1997) 406
, ,[7] On the structure of spaces with Ricci curvature bounded below, II, J. Differential Geom. 54 (2000) 13
, ,[8] On the structure of spaces with Ricci curvature bounded below, III, J. Differential Geom. 54 (2000) 37
, ,[9] Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975) 333
, ,[10] Lower Ricci curvature, branching and bi-Lipschitz structure of uniform Reifenberg spaces
, ,[11] Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. 176 (2012) 1173
, ,[12] Heat kernels and Green's functions on limit spaces, Comm. Anal. Geom. 10 (2002) 475
,[13] Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math. 87 (1987) 517
,[14] Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser (2007)
,[15] Ricci curvature and $L^p$–convergence, to appear in J. Reine Angew. Math.
,[16] Bishop–Gromov type inequality on Ricci limit spaces, J. Math. Soc. Japan 63 (2011) 419
,[17] Ricci curvature and convergence of Lipschitz functions, Comm. Anal. Geom. 19 (2011) 79
,[18] Convergence of Riemannian manifolds and Laplace operators, I, Ann. Inst. Fourier (Grenoble) 52 (2002) 1219
,[19] Convergence of Riemannian manifolds and Laplace operators, II, Potential Anal. 24 (2006) 137
,[20] Spectral convergence of Riemannian manifolds, Tohoku Math. J. 46 (1994) 147
, ,[21] Spectral convergence of Riemannian manifolds, II, Tohoku Math. J. 48 (1996) 71
, ,[22] A differentiable structure for metric measure spaces, Adv. Math. 183 (2004) 271
,[23] Convergence of spectral structures: A functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom. 11 (2003) 599
, ,[24] Ahlfors $Q$–regular spaces with arbitrary $Q\gt 1$ admitting weak Poincaré inequality, Geom. Funct. Anal. 10 (2000) 111
,[25] Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009) 903
, ,[26] On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007) 805
,[27] Almost everywhere existence of second differentiable structure of Alexandrov spaces, preprint
,[28] The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994) 629
, ,[29] Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1
,[30] A D Alexandrov spaces with curvature bounded from below, II, preprint
,[31] DC–structure on Alexandrov space
,[32] Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale, Math. Ann. 79 (1919) 340
,[33] Lectures on geometric measure theory, Proc. Cent. Math. Anal. Austr. Nat. Uni. 3, Australian National University Centre for Mathematical Analysis (1983)
,[34] On the geometry of metric measure spaces, I, Acta Math. 196 (2006) 65
,[35] On the geometry of metric measure spaces, II, Acta Math. 196 (2006) 133
,[36] Optimal transport: Old and new, Grundl. Math. Wissen. 338, Springer (2009)
,Cité par Sources :