A weakly second-order differential structure on rectifiable metric measure spaces
Geometry & topology, Tome 18 (2014) no. 2, pp. 633-668.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a definition of angles on the Gromov–Hausdorff limit space of a sequence of complete n–dimensional Riemannian manifolds with a lower Ricci curvature bound. We apply this to prove there is a weakly second-order differential structure on these spaces and prove that they admit a unique Levi-Civita connection, allowing us to define the Hessian of a twice differentiable function.

DOI : 10.2140/gt.2014.18.633
Classification : 53C20, 53C21
Keywords: Gromov–Hausdorff convergence, Ricci curvature, geometric measure theory

Honda, Shouhei 1

1 Faculty of Mathmatics, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
@article{GT_2014_18_2_a1,
     author = {Honda, Shouhei},
     title = {A weakly second-order differential structure on rectifiable metric measure spaces},
     journal = {Geometry & topology},
     pages = {633--668},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2014},
     doi = {10.2140/gt.2014.18.633},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.633/}
}
TY  - JOUR
AU  - Honda, Shouhei
TI  - A weakly second-order differential structure on rectifiable metric measure spaces
JO  - Geometry & topology
PY  - 2014
SP  - 633
EP  - 668
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.633/
DO  - 10.2140/gt.2014.18.633
ID  - GT_2014_18_2_a1
ER  - 
%0 Journal Article
%A Honda, Shouhei
%T A weakly second-order differential structure on rectifiable metric measure spaces
%J Geometry & topology
%D 2014
%P 633-668
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.633/
%R 10.2140/gt.2014.18.633
%F GT_2014_18_2_a1
Honda, Shouhei. A weakly second-order differential structure on rectifiable metric measure spaces. Geometry & topology, Tome 18 (2014) no. 2, pp. 633-668. doi : 10.2140/gt.2014.18.633. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.633/

[1] L Ambrosio, B Kirchheim, Currents in metric spaces, Acta Math. 185 (2000) 1

[2] Y Burago, M Gromov, G Perelman, A D Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3

[3] J Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428

[4] J Cheeger, Degeneration of Riemannian metrics under Ricci curvature bounds, Lezioni Fermiane, Scuola Normale Superiore (2001)

[5] J Cheeger, T H Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. 144 (1996) 189

[6] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, I, J. Differential Geom. 46 (1997) 406

[7] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, II, J. Differential Geom. 54 (2000) 13

[8] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded below, III, J. Differential Geom. 54 (2000) 37

[9] S Y Cheng, S T Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975) 333

[10] T H Colding, A Naber, Lower Ricci curvature, branching and bi-Lipschitz structure of uniform Reifenberg spaces

[11] T H Colding, A Naber, Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. 176 (2012) 1173

[12] Y Ding, Heat kernels and Green's functions on limit spaces, Comm. Anal. Geom. 10 (2002) 475

[13] K Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math. 87 (1987) 517

[14] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser (2007)

[15] S Honda, Ricci curvature and $L^p$–convergence, to appear in J. Reine Angew. Math.

[16] S Honda, Bishop–Gromov type inequality on Ricci limit spaces, J. Math. Soc. Japan 63 (2011) 419

[17] S Honda, Ricci curvature and convergence of Lipschitz functions, Comm. Anal. Geom. 19 (2011) 79

[18] A Kasue, Convergence of Riemannian manifolds and Laplace operators, I, Ann. Inst. Fourier (Grenoble) 52 (2002) 1219

[19] A Kasue, Convergence of Riemannian manifolds and Laplace operators, II, Potential Anal. 24 (2006) 137

[20] A Kasue, H Kumura, Spectral convergence of Riemannian manifolds, Tohoku Math. J. 46 (1994) 147

[21] A Kasue, H Kumura, Spectral convergence of Riemannian manifolds, II, Tohoku Math. J. 48 (1996) 71

[22] S Keith, A differentiable structure for metric measure spaces, Adv. Math. 183 (2004) 271

[23] K Kuwae, T Shioya, Convergence of spectral structures: A functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom. 11 (2003) 599

[24] T J Laakso, Ahlfors $Q$–regular spaces with arbitrary $Q\gt 1$ admitting weak Poincaré inequality, Geom. Funct. Anal. 10 (2000) 111

[25] J Lott, C Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009) 903

[26] S I Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007) 805

[27] Y Otsu, Almost everywhere existence of second differentiable structure of Alexandrov spaces, preprint

[28] Y Otsu, T Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994) 629

[29] P Pansu, Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1

[30] G Perelman, A D Alexandrov spaces with curvature bounded from below, II, preprint

[31] G Perelman, DC–structure on Alexandrov space

[32] H Rademacher, Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale, Math. Ann. 79 (1919) 340

[33] L Simon, Lectures on geometric measure theory, Proc. Cent. Math. Anal. Austr. Nat. Uni. 3, Australian National University Centre for Mathematical Analysis (1983)

[34] K T Sturm, On the geometry of metric measure spaces, I, Acta Math. 196 (2006) 65

[35] K T Sturm, On the geometry of metric measure spaces, II, Acta Math. 196 (2006) 133

[36] C Villani, Optimal transport: Old and new, Grundl. Math. Wissen. 338, Springer (2009)

Cité par Sources :