Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We observe that the maximal open set of constant curvature in a Riemannian manifold of curvature or has a convexity-type property, which we call two-convexity. This statement is used to prove a number of rigidity statements in comparison geometry.
Panov, Dmitri 1 ; Petrunin, Anton 2
@article{GT_2014_18_2_a0, author = {Panov, Dmitri and Petrunin, Anton}, title = {Sweeping out sectional curvature}, journal = {Geometry & topology}, pages = {617--631}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2014}, doi = {10.2140/gt.2014.18.617}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.617/} }
Panov, Dmitri; Petrunin, Anton. Sweeping out sectional curvature. Geometry & topology, Tome 18 (2014) no. 2, pp. 617-631. doi : 10.2140/gt.2014.18.617. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.617/
[1] Vnutrennyaya Geometriya Vypuklyh Poverhnosteĭ, OGIZ, Moscow-Leningrad, (1948) 387
,[2] Geometric curvature bounds in Riemannian manifolds with boundary, Trans. Amer. Math. Soc. 339 (1993) 703
, , ,[3] Alexandrov geometry
, , ,[4] Deformations of the hemisphere that increase scalar curvature, Invent. Math. 185 (2011) 175
, , ,[5] Volume and fundamental group of a manifold of nonpositive curvature, Mat. Sb. 122(164) (1983) 142
,[6] Comparison theorems in Riemannian geometry, AMS Chelsea Publishing (2008)
, ,[7] Sign and geometric meaning of curvature, Rend. Sem. Mat. Fis. Milano 61 (1991) 9
,[8] Rigidity theorems for compact manifolds with boundary and positive Ricci curvature, J. Geom. Anal. 19 (2009) 628
, ,[9] Global and local curvatures, from: "Riemannian geometry" (editors M Lovrić, M Min-Oo, M Y K Wang), Fields Inst. Monogr. 4, Amer. Math. Soc. (1996) 23
,[10] On the long-time behavior of type-III Ricci flow solutions, Math. Ann. 339 (2007) 627
,[11] Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math. Ann. 285 (1989) 527
,[12] Scalar curvature rigidity of certain symmetric spaces, from: "Geometry, topology, and dynamics" (editor F Lalonde), CRM Proc. Lecture Notes 15, Amer. Math. Soc. (1998) 127
,[13] Diffeomorphism finiteness, positive pinching, and second homotopy, Geom. Funct. Anal. 9 (1999) 736
, ,[14] Proof of the positive mass theorem, II, Comm. Math. Phys. 79 (1981) 231
, ,[15] A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981) 381
,[16] On deformations of a polygon on a sphere, Uspehi Mat. Nauk 11 (1956) 177
,[17] Examples of Riemannian manifolds with non-negative sectional curvature, from: "Surveys in differential geometry, Vol. XI" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, International Press (2007) 63
,Cité par Sources :