Distortion elements for surface homeomorphisms
Geometry & topology, Tome 18 (2014) no. 1, pp. 521-614.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let S be a compact orientable surface and f be an element of the group Homeo0(S) of homeomorphisms of S isotopic to the identity. Denote by f̃ a lift of f to the universal cover S̃ of S. In this article, the following result is proved: If there exists a fundamental domain D of the covering S̃ S such that

where dn is the diameter of f̃n(D), then the homeomorphism f is a distortion element of the group Homeo0(S).

DOI : 10.2140/gt.2014.18.521
Classification : 37C85
Keywords: homeomorphism, surface, group, distortion

Militon, Emmanuel 1

1 Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France
@article{GT_2014_18_1_a12,
     author = {Militon, Emmanuel},
     title = {Distortion elements for surface homeomorphisms},
     journal = {Geometry & topology},
     pages = {521--614},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     doi = {10.2140/gt.2014.18.521},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.521/}
}
TY  - JOUR
AU  - Militon, Emmanuel
TI  - Distortion elements for surface homeomorphisms
JO  - Geometry & topology
PY  - 2014
SP  - 521
EP  - 614
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.521/
DO  - 10.2140/gt.2014.18.521
ID  - GT_2014_18_1_a12
ER  - 
%0 Journal Article
%A Militon, Emmanuel
%T Distortion elements for surface homeomorphisms
%J Geometry & topology
%D 2014
%P 521-614
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.521/
%R 10.2140/gt.2014.18.521
%F GT_2014_18_1_a12
Militon, Emmanuel. Distortion elements for surface homeomorphisms. Geometry & topology, Tome 18 (2014) no. 1, pp. 521-614. doi : 10.2140/gt.2014.18.521. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.521/

[1] R D Anderson, The algebraic simplicity of certain groups of homeomorphisms, Amer. J. Math. 80 (1958) 955

[2] A Avila, Distortion elements in $\mathrm{Diff}^{\infty}(\mathbb{R} / \mathbb{Z})$

[3] F Béguin, S Crovisier, F Le Roux, A Patou, Pseudo-rotations of the closed annulus: Variation on a theorem of J Kwapisz, Nonlinearity 17 (2004) 1427

[4] A Bounemoura, Simplicité des groupes de transformations de surfaces, Ensaios Matemáticos 14, Soc. Bras. Mat. (2008)

[5] D Calegari, M H Freedman, Distortion in transformation groups, Geom. Topol. 10 (2006) 267

[6] B Farb, A Lubotzky, Y Minsky, Rank-$1$ phenomena for mapping class groups, Duke Math. J. 106 (2001) 581

[7] A Fathi, M R Herman, Existence de difféomorphismes minimaux, from: "Dynamical systems, Vol. I: Warsaw", Astérisque 49, Soc. Math. France (1977) 37

[8] G M Fisher, On the group of all homeomorphisms of a manifold, Trans. Amer. Math. Soc. 97 (1960) 193

[9] J Franks, M Handel, Distortion elements in group actions on surfaces, Duke Math. J. 131 (2006) 441

[10] É Ghys, Groups acting on the circle, Enseign. Math. 47 (2001) 329

[11] M E Hamstrom, Homotopy groups of the space of homeomorphisms on a $2$–manifold, Illinois J. Math. 10 (1966) 563

[12] P De La Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press (2000)

[13] M R Herman, Construction of some curious diffeomorphisms of the Riemann sphere, J. London Math. Soc. 34 (1986) 375

[14] T Jäger, The concept of bounded mean motion for toral homeomorphisms, Dyn. Syst. 24 (2009) 277

[15] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, Encyc. Math. Appl. 54, Cambridge Univ. Press (1995)

[16] R C Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. 89 (1969) 575

[17] A Koropecki, F A Tal, Area-preserving irrotational diffeomorphisms of the torus with sublinear diffusion

[18] P Le Calvez, J C Yoccoz, Un théorème d'indice pour les homéomorphismes du plan au voisinage d'un point fixe, Ann. of Math. 146 (1997) 241

[19] R C Lyndon, P E Schupp, Combinatorial group theory, Ergeb. Math. Grenzgeb. 89, Springer (1977)

[20] E Militon, Éléments de distorsion de $\mathrm{Diff}^\infty_0(M)$, Bull. Soc. Math. France 141 (2013) 35

[21] M Misiurewicz, K Ziemian, Rotation sets for maps of tori, J. London Math. Soc. 40 (1989) 490

[22] C F Novak, Discontinuity-growth of interval-exchange maps, J. Mod. Dyn. 3 (2009) 379

[23] L Polterovich, Growth of maps, distortion in groups and symplectic geometry, Invent. Math. 150 (2002) 655

[24] F Quinn, Ends of maps, III: Dimensions $4$ and $5$, J. Differential Geom. 17 (1982) 503

Cité par Sources :