Logarithmic structures on topological
Geometry & topology, Tome 18 (2014) no. 1, pp. 447-490.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study a modified version of Rognes’ logarithmic structures on structured ring spectra. In our setup, we obtain canonical logarithmic structures on connective K–theory spectra which approximate the respective periodic spectra. The inclusion of the p–complete Adams summand into the p–complete connective complex K–theory spectrum is compatible with these logarithmic structures. The vanishing of appropriate logarithmic topological André–Quillen homology groups confirms that the inclusion of the Adams summand should be viewed as a tamely ramified extension of ring spectra.

DOI : 10.2140/gt.2014.18.447
Classification : 55P43, 14F10, 55P47
Keywords: symmetric spectra, log structures, $E$–infinity spaces, group completion, topological André–Quillen homology

Sagave, Steffen 1

1 Mathematical Institute, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
@article{GT_2014_18_1_a10,
     author = {Sagave, Steffen},
     title = {Logarithmic structures on topological},
     journal = {Geometry & topology},
     pages = {447--490},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     doi = {10.2140/gt.2014.18.447},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.447/}
}
TY  - JOUR
AU  - Sagave, Steffen
TI  - Logarithmic structures on topological
JO  - Geometry & topology
PY  - 2014
SP  - 447
EP  - 490
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.447/
DO  - 10.2140/gt.2014.18.447
ID  - GT_2014_18_1_a10
ER  - 
%0 Journal Article
%A Sagave, Steffen
%T Logarithmic structures on topological
%J Geometry & topology
%D 2014
%P 447-490
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.447/
%R 10.2140/gt.2014.18.447
%F GT_2014_18_1_a10
Sagave, Steffen. Logarithmic structures on topological. Geometry & topology, Tome 18 (2014) no. 1, pp. 447-490. doi : 10.2140/gt.2014.18.447. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.447/

[1] C Ausoni, Topological Hochschild homology of connective complex $K$–theory, Amer. J. Math. 127 (2005) 1261

[2] C Ausoni, J Rognes, Algebraic $K$–theory of the fraction field of topological $K$–theory

[3] A Baker, B Richter, On the $\Gamma$–cohomology of rings of numerical polynomials and $E_\infty$ structures on $K$–theory, Comment. Math. Helv. 80 (2005) 691

[4] A Baker, B Richter, Uniqueness of $E_\infty$ structures for connective covers, Proc. Amer. Math. Soc. 136 (2008) 707

[5] M Basterra, André–Quillen cohomology of commutative $S$–algebras, J. Pure Appl. Algebra 144 (1999) 111

[6] A J Blumberg, M A Mandell, Localization for $\mathit{THH}(ku)$ and the topological Hochschild and cyclic homology of Waldhausen categories

[7] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47, Amer. Math. Soc. (1997)

[8] L Hesselholt, I Madsen, On the $K$–theory of local fields, Ann. of Math. 158 (2003) 1

[9] P S Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs 99, Amer. Math. Soc. (2003)

[10] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149

[11] K Kato, Logarithmic structures of Fontaine–Illusie, from: "Algebraic analysis, geometry, and number theory" (editor J I Igusa), Johns Hopkins Univ. Press (1989) 191

[12] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441

[13] A Ogus, Lectures on logarithmic algebraic geometry, preprint

[14] J Rognes, Topological logarithmic structures, from: "New topological contexts for Galois theory and algebraic geometry" (editors A Baker, B Richter), Geom. Topol. Monogr. 16 (2009) 401

[15] J Rognes, S Sagave, C Schlichtkrull, Logarithmic topological Hochschild homology, in preparation

[16] S Sagave, Spectra of units for periodic ring spectra and group completion of graded $E_{\infty}$ spaces

[17] S Sagave, C Schlichtkrull, Diagram spaces and symmetric spectra, Adv. Math. 231 (2012) 2116

[18] S Sagave, C Schlichtkrull, Group completion and units in $\mathcal I$–spaces, Algebr. Geom. Topol. 13 (2013) 625

[19] C Schlichtkrull, Units of ring spectra and their traces in algebraic $K$–theory, Geom. Topol. 8 (2004) 645

[20] S Schwede, Symmetric spectra, Book project in progress

[21] S Schwede, $S$–modules and symmetric spectra, Math. Ann. 319 (2001) 517

[22] G Segal, Categories and cohomology theories, Topology 13 (1974) 293

Cité par Sources :