Branched projective structures with Fuchsian holonomy
Geometry & topology, Tome 18 (2014) no. 1, pp. 379-446.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that if S is a closed compact surface of genus g 2, and if ρ: π1(S) PSL(2, ) is a quasi-Fuchsian representation, then the space k,ρ of branched projective structures on S with total branching order k and holonomy ρ is connected, for k > 0. Equivalently, two branched projective structures with the same quasi-Fuchsian holonomy and the same number of branch points are related by a movement of branch points. In particular grafting annuli are obtained by moving branch points. In the appendix we give an explicit atlas for k,ρ for non-elementary representations ρ. It is shown to be a smooth complex manifold modeled on Hurwitz spaces.

DOI : 10.2140/gt.2014.18.379
Classification : 30F35, 57M20, 53A30, 14H15
Keywords: projective structures, fuchsian holonomy, moduli spaces

Calsamiglia, Gabriel 1 ; Deroin, Bertrand 2 ; Francaviglia, Stefano 3

1 Instituto de Matemática, Universidade Federal Fluminense, Rua Mário Santos Braga s/n, 24020-140, Niterói, Brazil
2 Département de mathématiques d’Orsay, Université Paris 11, 91405 Orsay Cedex, France
3 Dipartimento di Matematica, Università di Bologna, P.zza Porta S. Donato 5, 40126 Bologna, Italy
@article{GT_2014_18_1_a9,
     author = {Calsamiglia, Gabriel and Deroin, Bertrand and Francaviglia, Stefano},
     title = {Branched projective structures with {Fuchsian} holonomy},
     journal = {Geometry & topology},
     pages = {379--446},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     doi = {10.2140/gt.2014.18.379},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.379/}
}
TY  - JOUR
AU  - Calsamiglia, Gabriel
AU  - Deroin, Bertrand
AU  - Francaviglia, Stefano
TI  - Branched projective structures with Fuchsian holonomy
JO  - Geometry & topology
PY  - 2014
SP  - 379
EP  - 446
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.379/
DO  - 10.2140/gt.2014.18.379
ID  - GT_2014_18_1_a9
ER  - 
%0 Journal Article
%A Calsamiglia, Gabriel
%A Deroin, Bertrand
%A Francaviglia, Stefano
%T Branched projective structures with Fuchsian holonomy
%J Geometry & topology
%D 2014
%P 379-446
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.379/
%R 10.2140/gt.2014.18.379
%F GT_2014_18_1_a9
Calsamiglia, Gabriel; Deroin, Bertrand; Francaviglia, Stefano. Branched projective structures with Fuchsian holonomy. Geometry & topology, Tome 18 (2014) no. 1, pp. 379-446. doi : 10.2140/gt.2014.18.379. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.379/

[1] E Arbarello, M Cornalba, P A Griffiths, Geometry of algebraic curves, Vol. II, Grundl. Math. Wissen. 268, Springer (2011)

[2] S Baba, $2\pi$–graftings and complex projective structures, I

[3] L Bers, Spaces of Riemann surfaces as bounded domains, Bull. Amer. Math. Soc. 66 (1960) 98

[4] S Choi, H Lee, Geometric structures on manifolds and holonomy-invariant metrics, Forum Math. 9 (1997) 247

[5] G Faltings, Real projective structures on Riemann surfaces, Compositio Math. 48 (1983) 223

[6] D Gallo, M Kapovich, A Marden, The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math. 151 (2000) 625

[7] É Ghys, Déformations des structures complexes sur les espaces homogènes de $\mathrm{SL}(2,\mathbf C)$, J. Reine Angew. Math. 468 (1995) 113

[8] W Goldman, Projective structures with Fuchsian holonomy, J. Differential Geom. 25 (1987) 297

[9] A Grothendieck, Techniques de construction en géométrie analytique, X: Construction de l'espace de Teichmüller, from: "Familles d'espaces complexes et fondements de la géométrie analytique", Sem. H Cartan 13, ENS (1962)

[10] R C Gunning, Special coordinate coverings of Riemann surfaces, Math. Ann. 170 (1967) 67

[11] J Harris, I Morrison, Moduli of curves, Graduate Texts in Mathematics 187, Springer (1998)

[12] D A Hejhal, Monodromy groups and linearly polymorphic functions, Acta Math. 135 (1975) 1

[13] P Hubert, H Masur, T Schmidt, A Zorich, Problems on billiards, flat surfaces and translation surfaces, from: "Problems on mapping class groups and related topics" (editor B Farb), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 233

[14] A T Huckleberry, G A Margulis, Invariant analytic hypersurfaces, Invent. Math. 71 (1983) 235

[15] A Hurwitz, Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891) 1

[16] K Kodaira, Complex manifolds and deformation of complex structures, Grundl. Math. Wissen. 283, Springer (1986)

[17] M Kontsevich, A Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631

[18] F Liu, B Osserman, The irreducibility of certain pure-cycle Hurwitz spaces, Amer. J. Math. 130 (2008) 1687

[19] F Loray, J V Pereira, Transversely projective foliations on surfaces: Existence of minimal form and prescription of monodromy, Internat. J. Math. 18 (2007) 723

[20] R Mandelbaum, Branched structures on Riemann surfaces, Trans. Amer. Math. Soc. 163 (1972) 261

[21] R Mandelbaum, Branched structures and affine and projective bundles on Riemann surfaces, Trans. Amer. Math. Soc. 183 (1973) 37

[22] R Mandelbaum, Unstable bundles and branched structures on Riemann surfaces, Math. Ann. 214 (1975) 49

[23] B Maskit, On a class of Kleinian groups, Ann. Acad. Sci. Fenn. Ser. A I 442 (1969)

[24] D V Mathews, Hyperbolic cone-manifold structures with prescribed holonomy, I: Punctured tori, Geom. Dedicata 152 (2011) 85

[25] D V Mathews, Hyperbolic cone-manifold structures with prescribed holonomy, II: Higher genus, Geom. Dedicata 160 (2012) 15

[26] B A Scárdua, Transversely affine and transversely projective holomorphic foliations, Ann. Sci. École Norm. Sup. 30 (1997) 169

[27] D Sullivan, W Thurston, Manifolds with canonical coordinate charts: Some examples, Enseign. Math. 29 (1983) 15

[28] S P Tan, Branched $\mathbf C\mathrm{P}^1$–structures on surfaces with prescribed real holonomy, Math. Ann. 300 (1994) 649

[29] F Touzet, Sur les feuilletages holomorphes transversalement projectifs, Ann. Inst. Fourier (Grenoble) 53 (2003) 815

Cité par Sources :