Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a non-compact geometrically finite hyperbolic –manifold without cusps of rank . The deformation space of can be identified with the Teichmüller space of the conformal boundary of as the graph of a section in . We construct a Hermitian holomorphic line bundle on , with curvature equal to a multiple of the Weil–Petersson symplectic form. This bundle has a canonical holomorphic section defined by , where is the renormalized volume of and is the Chern–Simons invariant of . This section is parallel on for the Hermitian connection modified by the component of the Liouville form on . As applications, we deduce that is Lagrangian in , and that is a Kähler potential for the Weil–Petersson metric on and on its quotient by a certain subgroup of the mapping class group. For the Schottky uniformisation, we use a formula of Zograf to construct an explicit isomorphism of holomorphic Hermitian line bundles between and the sixth power of the determinant line bundle.
Guillarmou, Colin 1 ; Moroianu, Sergiu 2
@article{GT_2014_18_1_a8, author = {Guillarmou, Colin and Moroianu, Sergiu}, title = {Chern{\textendash}Simons line bundle on {Teichm\"uller} space}, journal = {Geometry & topology}, pages = {327--377}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2014}, doi = {10.2140/gt.2014.18.327}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.327/} }
TY - JOUR AU - Guillarmou, Colin AU - Moroianu, Sergiu TI - Chern–Simons line bundle on Teichmüller space JO - Geometry & topology PY - 2014 SP - 327 EP - 377 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.327/ DO - 10.2140/gt.2014.18.327 ID - GT_2014_18_1_a8 ER -
Guillarmou, Colin; Moroianu, Sergiu. Chern–Simons line bundle on Teichmüller space. Geometry & topology, Tome 18 (2014) no. 1, pp. 327-377. doi : 10.2140/gt.2014.18.327. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.327/
[1] Renormalizing curvature integrals on Poincaré–Einstein manifolds, Adv. Math. 221 (2009) 140
,[2] Chern–Simons theory in dimension three
,[3] String structures and trivialisations of a Pfaffian line bundle, Comm. Math. Phys. 307 (2011) 675
,[4] Characteristic forms and geometric invariants, Ann. of Math. 99 (1974) 48
, ,[5] The ambient metric, Annals of Mathematics Studies 178, Princeton Univ. Press (2012)
, ,[6] Automorphic functions, McGraw-Hill (1929)
,[7] Classical Chern–Simons theory, I, Adv. Math. 113 (1995) 237
,[8] Volume and area renormalizations for conformally compact Einstein metrics, from: "The proceedings of the $19^{\mathrm{th}}$ winter school “Geometry and Physics”", Rend. Circ. Mat. Palermo Suppl. 63 (2000) 31
,[9] Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J. 129 (2005) 1
,[10] Generalized Krein formula, determinants, and Selberg zeta function in even dimension, Amer. J. Math. 131 (2009) 1359
,[11] Eta invariant and Selberg zeta function of odd type over convex co-compact hyperbolic manifolds, Adv. Math. 225 (2010) 2464
, , ,[12] The holographic Weyl anomaly, J. High Energy Phys. (1998)
, ,[13] Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1
, ,[14] Chern–Simons invariants of $3$–manifolds decomposed along tori and the circle bundle over the representation space of $T^2$, Comm. Math. Phys. 153 (1993) 521
, ,[15] Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929
,[16] On holomorphic factorization in asymptotically AdS $3{D}$ gravity, Classical Quantum Gravity 20 (2003) 4015
,[17] On the renormalized volume of hyperbolic $3$–manifolds, Comm. Math. Phys. 279 (2008) 637
, ,[18] Deformations of Kleinian groups, from: "Handbook of Teichmüller theory, Vol. I" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc., Zürich (2007) 411
,[19] The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988) 309
,[20] Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987) 260
, ,[21] Holomorphic factorization of determinants of Laplacians on Riemann surfaces and a higher genus generalization of Kronecker's first limit formula, Geom. Funct. Anal. 16 (2006) 1291
, ,[22] Holomorphic factorization of determinants of Laplacians using quasi-Fuchsian uniformization, Lett. Math. Phys. 83 (2008) 41
, ,[23] Quasi-Fuchsian manifolds with particles, J. Differential Geom. 83 (2009) 75
, ,[24] Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37, 96
,[25] Some comments on Chern–Simons gauge theory, Comm. Math. Phys. 126 (1989) 409
, , ,[26] $R$–torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971) 145
, ,[27] Liouville action and Weil–Petersson metric on deformation spaces, global Kleinian reciprocity and holography, Comm. Math. Phys. 239 (2003) 183
, ,[28] On the uniformization of Riemann surfaces and on the Weil–Petersson metric on the Teichmüller and Schottky spaces, Math. USSR-Sb. 60 (1988) 297
, ,[29] Teichmüller theory in Riemannian geometry, Lectures in Mathematics ETH Zürich, Birkhäuser (1992) 220
,[30] Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math. 85 (1986) 119
,[31] The $\eta$–invariant of hyperbolic $3$–manifolds, Invent. Math. 81 (1985) 473
,[32] Liouville action on moduli spaces and uniformization of degenerate Riemann surfaces, Algebra i Analiz 1 (1989) 136
,Cité par Sources :