Chern–Simons line bundle on Teichmüller space
Geometry & topology, Tome 18 (2014) no. 1, pp. 327-377.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let X be a non-compact geometrically finite hyperbolic 3–manifold without cusps of rank 1. The deformation space of X can be identified with the Teichmüller space T of the conformal boundary of X as the graph of a section in TT. We construct a Hermitian holomorphic line bundle on T, with curvature equal to a multiple of the Weil–Petersson symplectic form. This bundle has a canonical holomorphic section defined by exp( 1 π VolR(X) + 2πiCS(X)), where VolR(X) is the renormalized volume of X and CS(X) is the Chern–Simons invariant of X. This section is parallel on for the Hermitian connection modified by the (1,0) component of the Liouville form on TT. As applications, we deduce that is Lagrangian in TT, and that VolR(X) is a Kähler potential for the Weil–Petersson metric on T and on its quotient by a certain subgroup of the mapping class group. For the Schottky uniformisation, we use a formula of Zograf to construct an explicit isomorphism of holomorphic Hermitian line bundles between 1 and the sixth power of the determinant line bundle.

DOI : 10.2140/gt.2014.18.327
Classification : 32G15, 58J28
Keywords: Chern–Simons invariants, hyperbolic manifolds, renormalized volume

Guillarmou, Colin 1 ; Moroianu, Sergiu 2

1 DMA, UMR 8553 CNRS, École Normale Supérieure, 45 Rue d’Ulm, 75230 Paris Cedex 05, France
2 Institutul de Matematică al Academiei Române, PO Box 1-764, RO-014700 Bucharest, Romania
@article{GT_2014_18_1_a8,
     author = {Guillarmou, Colin and Moroianu, Sergiu},
     title = {Chern{\textendash}Simons line bundle on {Teichm\"uller} space},
     journal = {Geometry & topology},
     pages = {327--377},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     doi = {10.2140/gt.2014.18.327},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.327/}
}
TY  - JOUR
AU  - Guillarmou, Colin
AU  - Moroianu, Sergiu
TI  - Chern–Simons line bundle on Teichmüller space
JO  - Geometry & topology
PY  - 2014
SP  - 327
EP  - 377
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.327/
DO  - 10.2140/gt.2014.18.327
ID  - GT_2014_18_1_a8
ER  - 
%0 Journal Article
%A Guillarmou, Colin
%A Moroianu, Sergiu
%T Chern–Simons line bundle on Teichmüller space
%J Geometry & topology
%D 2014
%P 327-377
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.327/
%R 10.2140/gt.2014.18.327
%F GT_2014_18_1_a8
Guillarmou, Colin; Moroianu, Sergiu. Chern–Simons line bundle on Teichmüller space. Geometry & topology, Tome 18 (2014) no. 1, pp. 327-377. doi : 10.2140/gt.2014.18.327. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.327/

[1] P Albin, Renormalizing curvature integrals on Poincaré–Einstein manifolds, Adv. Math. 221 (2009) 140

[2] S Baseilhac, Chern–Simons theory in dimension three

[3] U Bunke, String structures and trivialisations of a Pfaffian line bundle, Comm. Math. Phys. 307 (2011) 675

[4] S S Chern, J Simons, Characteristic forms and geometric invariants, Ann. of Math. 99 (1974) 48

[5] C Fefferman, C R Graham, The ambient metric, Annals of Mathematics Studies 178, Princeton Univ. Press (2012)

[6] L Ford, Automorphic functions, McGraw-Hill (1929)

[7] D S Freed, Classical Chern–Simons theory, I, Adv. Math. 113 (1995) 237

[8] C R Graham, Volume and area renormalizations for conformally compact Einstein metrics, from: "The proceedings of the $19^{\mathrm{th}}$ winter school “Geometry and Physics”", Rend. Circ. Mat. Palermo Suppl. 63 (2000) 31

[9] C Guillarmou, Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J. 129 (2005) 1

[10] C Guillarmou, Generalized Krein formula, determinants, and Selberg zeta function in even dimension, Amer. J. Math. 131 (2009) 1359

[11] C Guillarmou, S Moroianu, J Park, Eta invariant and Selberg zeta function of odd type over convex co-compact hyperbolic manifolds, Adv. Math. 225 (2010) 2464

[12] M Henningson, K Skenderis, The holographic Weyl anomaly, J. High Energy Phys. (1998)

[13] C D Hodgson, S P Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1

[14] P Kirk, E Klassen, Chern–Simons invariants of $3$–manifolds decomposed along tori and the circle bundle over the representation space of $T^2$, Comm. Math. Phys. 153 (1993) 521

[15] K Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929

[16] K Krasnov, On holomorphic factorization in asymptotically AdS $3{D}$ gravity, Classical Quantum Gravity 20 (2003) 4015

[17] K Krasnov, J M Schlenker, On the renormalized volume of hyperbolic $3$–manifolds, Comm. Math. Phys. 279 (2008) 637

[18] A Marden, Deformations of Kleinian groups, from: "Handbook of Teichmüller theory, Vol. I" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc., Zürich (2007) 411

[19] R R Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988) 309

[20] R R Mazzeo, R B Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987) 260

[21] A Mcintyre, L A Takhtajan, Holomorphic factorization of determinants of Laplacians on Riemann surfaces and a higher genus generalization of Kronecker's first limit formula, Geom. Funct. Anal. 16 (2006) 1291

[22] A Mcintyre, L P Teo, Holomorphic factorization of determinants of Laplacians using quasi-Fuchsian uniformization, Lett. Math. Phys. 83 (2008) 41

[23] S Moroianu, J M Schlenker, Quasi-Fuchsian manifolds with particles, J. Differential Geom. 83 (2009) 75

[24] D Quillen, Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37, 96

[25] T R Ramadas, I M Singer, J Weitsman, Some comments on Chern–Simons gauge theory, Comm. Math. Phys. 126 (1989) 409

[26] D B Ray, I M Singer, $R$–torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971) 145

[27] L A Takhtajan, L P Teo, Liouville action and Weil–Petersson metric on deformation spaces, global Kleinian reciprocity and holography, Comm. Math. Phys. 239 (2003) 183

[28] L A Takhtajan, P G Zograf, On the uniformization of Riemann surfaces and on the Weil–Petersson metric on the Teichmüller and Schottky spaces, Math. USSR-Sb. 60 (1988) 297

[29] A J Tromba, Teichmüller theory in Riemannian geometry, Lectures in Mathematics ETH Zürich, Birkhäuser (1992) 220

[30] S A Wolpert, Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math. 85 (1986) 119

[31] T Yoshida, The $\eta$–invariant of hyperbolic $3$–manifolds, Invent. Math. 81 (1985) 473

[32] P G Zograf, Liouville action on moduli spaces and uniformization of degenerate Riemann surfaces, Algebra i Analiz 1 (1989) 136

Cité par Sources :