Non-positively curved complexes of groups and boundaries
Geometry & topology, Tome 18 (2014) no. 1, pp. 31-102.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a complex of groups over a finite simplicial complex in the sense of Haefliger, we give conditions under which it is possible to build an EZ–structure in the sense of Farrell and Lafont for its fundamental group out of such structures for its local groups. As an application, we prove a combination theorem that yields a procedure for getting hyperbolic groups as fundamental groups of simple complexes of hyperbolic groups. The construction provides a description of the Gromov boundary of such groups.

DOI : 10.2140/gt.2014.18.31
Classification : 20F65, 20F67, 20F69
Keywords: complexes of groups, boundaries of groups, hyperbolic groups

Martin, Alexandre 1

1 IRMA, Université de Strasbourg, 7 rue René-Descartes, 67084 Cedex Strasbourg, France
@article{GT_2014_18_1_a2,
     author = {Martin, Alexandre},
     title = {Non-positively curved complexes of groups and boundaries},
     journal = {Geometry & topology},
     pages = {31--102},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     doi = {10.2140/gt.2014.18.31},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.31/}
}
TY  - JOUR
AU  - Martin, Alexandre
TI  - Non-positively curved complexes of groups and boundaries
JO  - Geometry & topology
PY  - 2014
SP  - 31
EP  - 102
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.31/
DO  - 10.2140/gt.2014.18.31
ID  - GT_2014_18_1_a2
ER  - 
%0 Journal Article
%A Martin, Alexandre
%T Non-positively curved complexes of groups and boundaries
%J Geometry & topology
%D 2014
%P 31-102
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.31/
%R 10.2140/gt.2014.18.31
%F GT_2014_18_1_a2
Martin, Alexandre. Non-positively curved complexes of groups and boundaries. Geometry & topology, Tome 18 (2014) no. 1, pp. 31-102. doi : 10.2140/gt.2014.18.31. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.31/

[1] J Behrstock, C Druţu, L Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Math. Ann. 344 (2009) 543

[2] M Bestvina, Local homology properties of boundaries of groups, Michigan Math. J. 43 (1996) 123

[3] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85

[4] M Bestvina, G Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469

[5] B H Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998) 643

[6] B H Bowditch, Convergence groups and configuration spaces, from: "Geometric group theory down under" (editors J Cossey, C F Miller III, W D Neumann, M Shapiro), de Gruyter (1999) 23

[7] B H Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008) 281

[8] M R Bridson, Geodesics and curvature in metric simplicial complexes, from: "Group theory from a geometrical viewpoint" (editors É Ghys, A Haefliger, A Verjovsky), World Sci. Publ. (1991) 373

[9] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)

[10] P E Caprace, A Lytchak, At infinity of finite-dimensional CAT(0) spaces, Math. Ann. 346 (2010) 1

[11] G Carlsson, E K Pedersen, Controlled algebra and the Novikov conjectures for $K$– and $L$–theory, Topology 34 (1995) 731

[12] M Coornaert, T Delzant, A Papadopoulos, Géométrie et théorie des groupes: Les groupes hyperboliques de Gromov, Lecture Notes in Mathematics 1441, Springer (1990)

[13] J M Corson, Complexes of groups, Proc. London Math. Soc. 65 (1992) 199

[14] F Dahmani, Classifying spaces and boundaries for relatively hyperbolic groups, Proc. London Math. Soc. 86 (2003) 666

[15] F Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933

[16] T Delzant, Sur l'accessibilité acylindrique des groupes de présentation finie, Ann. Inst. Fourier (Grenoble) 49 (1999) 1215

[17] C H Dowker, Topology of metric complexes, Amer. J. Math. 74 (1952) 555

[18] A N Dranishnikov, On Bestvina–Mess formula, from: "Topological and asymptotic aspects of group theory" (editors R Grigorchuk, M Mihalik, M Sapir, Z Šunik), Contemp. Math. 394, Amer. Math. Soc. (2006) 77

[19] F T Farrell, J F Lafont, $E\!\mathcal{Z}$–structures and topological applications, Comment. Math. Helv. 80 (2005) 103

[20] E M Freden, Negatively curved groups have the convergence property, I, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995) 333

[21] R Gitik, M Mitra, E Rips, M Sageev, Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321

[22] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[23] M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1

[24] A Haefliger, Extension of complexes of groups, Ann. Inst. Fourier (Grenoble) 42 (1992) 275

[25] I Kapovich, The combination theorem and quasiconvexity, Internat. J. Algebra Comput. 11 (2001) 185

[26] H A Masur, Y N Minsky, Geometry of the complex of curves, I: Hyperbolicity, Invent. Math. 138 (1999) 103

[27] D Meintrup, T Schick, A model for the universal space for proper actions of a hyperbolic group, New York J. Math. 8 (2002) 1

[28] M Mj, P Sardar, A combination theorem for metric bundles, Geom. Funct. Anal. 22 (2012) 1636

[29] D Osajda, P Przytycki, Boundaries of systolic groups, Geom. Topol. 13 (2009) 2807

[30] P Scott, T Wall, Topological methods in group theory, from: "Homological group theory" (editor C T C Wall), London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 137

[31] Z Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997) 527

[32] C J Tirel, $\mathcal Z$–structures on product groups, Algebr. Geom. Topol. 11 (2011) 2587

[33] P Tukia, Conical limit points and uniform convergence groups, J. Reine Angew. Math. 501 (1998) 71

Cité par Sources :