Affine unfoldings of convex polyhedra
Geometry & topology, Tome 18 (2014) no. 5, pp. 3055-3090.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that every convex polyhedron admits a simple edge unfolding after an affine transformation. In particular, there exists no combinatorial obstruction to a positive resolution of Dürer’s unfoldability problem, which answers a question of Croft, Falconer and Guy. Among other techniques, the proof employs a topological characterization of embeddings among the planar immersions of the disk.

DOI : 10.2140/gt.2014.18.3055
Classification : 52B05, 57N35, 05C10, 57M10
Keywords: convex polyhedron, unfolding, development, spanning tree, edge graph, isometric embedding, immersion, covering spaces, Dürer's problem

Ghomi, Mohammad 1

1 School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332, USA
@article{GT_2014_18_5_a8,
     author = {Ghomi, Mohammad},
     title = {Affine unfoldings of convex polyhedra},
     journal = {Geometry & topology},
     pages = {3055--3090},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2014},
     doi = {10.2140/gt.2014.18.3055},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.3055/}
}
TY  - JOUR
AU  - Ghomi, Mohammad
TI  - Affine unfoldings of convex polyhedra
JO  - Geometry & topology
PY  - 2014
SP  - 3055
EP  - 3090
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.3055/
DO  - 10.2140/gt.2014.18.3055
ID  - GT_2014_18_5_a8
ER  - 
%0 Journal Article
%A Ghomi, Mohammad
%T Affine unfoldings of convex polyhedra
%J Geometry & topology
%D 2014
%P 3055-3090
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.3055/
%R 10.2140/gt.2014.18.3055
%F GT_2014_18_5_a8
Ghomi, Mohammad. Affine unfoldings of convex polyhedra. Geometry & topology, Tome 18 (2014) no. 5, pp. 3055-3090. doi : 10.2140/gt.2014.18.3055. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.3055/

[1] A D Alexandrov, Convex polyhedra, Springer Monographs in Math., Springer (2005)

[2] V N Berestovskiĭ, C P Plaut, Covering $\mathbb{R}$–trees, $\mathbb{R}$–free groups and dendrites, Adv. Math. 224 (2010) 1765

[3] M P Do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Englewood Cliffs, N.J. (1976)

[4] H T Croft, K J Falconer, R K Guy, Unsolved problems in geometry, Problem Books in Math., Springer (1991)

[5] E D Demaine, M L Demaine, V Hart, J Iacono, S Langerman, J O’Rourke, Continuous blooming of convex polyhedra, Graphs Combin. 27 (2011) 363

[6] E D Demaine, J O’Rourke, Geometric folding algorithms, Cambridge Univ. Press (2007)

[7] A Dürer, The painter's manual, Abaris Books (1977)

[8] M Ghomi, Gauss map, topology and convexity of hypersurfaces with nonvanishing curvature, Topology 41 (2002) 107

[9] M Ghomi, A Riemannian four vertex theorem for surfaces with boundary, Proc. Amer. Math. Soc. 139 (2011) 293

[10] B Grünbaum, Nets of polyhedra, II, Geombinatorics 1 (1991) 5

[11] B Grünbaum, No-net polyhedra, Geombinatorics 11 (2002) 111

[12] J I Itoh, J O’Rourke, C Vîlcu, Star unfolding convex polyhedra via quasigeodesic loops, Discrete Comput. Geom. 44 (2010) 35

[13] B Lucier, Local overlaps in special unfoldings of convex polyhedra, Comput. Geom. 42 (2009) 495

[14] E Miller, I Pak, Metric combinatorics of convex polyhedra: cut loci and nonoverlapping unfoldings, Discrete Comput. Geom. 39 (2008) 339

[15] E E Moise, Geometric topology in dimensions $2$ and $3$, Graduate Texts in Math. 47, Springer (1977)

[16] J O’Rourke, How to fold it, Cambridge Univ. Press (2011)

[17] I Pak, Lectures on discrete and polyhedral geometry (2008)

[18] C Schevon, Algorithms for geodesics on polytopes, PhD thesis, Johns Hopkins University (1989)

[19] W Schlickenrieder, Nets of polyhedra, Master’s thesis, Technische Universität (1997)

[20] G C Shephard, Convex polytopes with convex nets, Math. Proc. Cambridge Philos. Soc. 78 (1975) 389

[21] M Spivak, A comprehensive introduction to differential geometry, Volume I, Publish or Perish, Inc. (1979)

[22] A S Tarasov, Existence of a polyhedron which does not have a nonoverlapping pseudoedge unfolding,

[23] G M Ziegler, Lectures on polytopes, Graduate Texts in Math. 152, Springer (1995)

Cité par Sources :