Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that every convex polyhedron admits a simple edge unfolding after an affine transformation. In particular, there exists no combinatorial obstruction to a positive resolution of Dürer’s unfoldability problem, which answers a question of Croft, Falconer and Guy. Among other techniques, the proof employs a topological characterization of embeddings among the planar immersions of the disk.
Ghomi, Mohammad 1
@article{GT_2014_18_5_a8, author = {Ghomi, Mohammad}, title = {Affine unfoldings of convex polyhedra}, journal = {Geometry & topology}, pages = {3055--3090}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2014}, doi = {10.2140/gt.2014.18.3055}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.3055/} }
Ghomi, Mohammad. Affine unfoldings of convex polyhedra. Geometry & topology, Tome 18 (2014) no. 5, pp. 3055-3090. doi : 10.2140/gt.2014.18.3055. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.3055/
[1] Convex polyhedra, Springer Monographs in Math., Springer (2005)
,[2] Covering $\mathbb{R}$–trees, $\mathbb{R}$–free groups and dendrites, Adv. Math. 224 (2010) 1765
, ,[3] Differential geometry of curves and surfaces, Prentice-Hall, Englewood Cliffs, N.J. (1976)
,[4] Unsolved problems in geometry, Problem Books in Math., Springer (1991)
, , ,[5] Continuous blooming of convex polyhedra, Graphs Combin. 27 (2011) 363
, , , , , ,[6] Geometric folding algorithms, Cambridge Univ. Press (2007)
, ,[7] The painter's manual, Abaris Books (1977)
,[8] Gauss map, topology and convexity of hypersurfaces with nonvanishing curvature, Topology 41 (2002) 107
,[9] A Riemannian four vertex theorem for surfaces with boundary, Proc. Amer. Math. Soc. 139 (2011) 293
,[10] Nets of polyhedra, II, Geombinatorics 1 (1991) 5
,[11] No-net polyhedra, Geombinatorics 11 (2002) 111
,[12] Star unfolding convex polyhedra via quasigeodesic loops, Discrete Comput. Geom. 44 (2010) 35
, , ,[13] Local overlaps in special unfoldings of convex polyhedra, Comput. Geom. 42 (2009) 495
,[14] Metric combinatorics of convex polyhedra: cut loci and nonoverlapping unfoldings, Discrete Comput. Geom. 39 (2008) 339
, ,[15] Geometric topology in dimensions $2$ and $3$, Graduate Texts in Math. 47, Springer (1977)
,[16] How to fold it, Cambridge Univ. Press (2011)
,[17] Lectures on discrete and polyhedral geometry (2008)
,[18] Algorithms for geodesics on polytopes, PhD thesis, Johns Hopkins University (1989)
,[19] Nets of polyhedra, Master’s thesis, Technische Universität (1997)
,[20] Convex polytopes with convex nets, Math. Proc. Cambridge Philos. Soc. 78 (1975) 389
,[21] A comprehensive introduction to differential geometry, Volume I, Publish or Perish, Inc. (1979)
,[22] Existence of a polyhedron which does not have a nonoverlapping pseudoedge unfolding,
,[23] Lectures on polytopes, Graduate Texts in Math. 152, Springer (1995)
,Cité par Sources :