FI-modules over Noetherian rings
Geometry & topology, Tome 18 (2014) no. 5, pp. 2951-2984.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

FI-modules were introduced by the first three authors to encode sequences of representations of symmetric groups. Over a field of characteristic 0, finite generation of an FI-module implies representation stability for the corresponding sequence of Sn–representations. In this paper we prove the Noetherian property for FI-modules over arbitrary Noetherian rings: any sub- FI-module of a finitely generated FI-module is finitely generated. This lets us extend many results to representations in positive characteristic, and even to integral coefficients. We focus on three major applications of the main theorem: on the integral and mod p cohomology of configuration spaces; on diagonal coinvariant algebras in positive characteristic; and on an integral version of Putman’s central stability for homology of congruence subgroups.

DOI : 10.2140/gt.2014.18.2951
Classification : 20B30, 20C32
Keywords: FI-modules, representation stability, congruence subgroup, configuration space, cohomology

Church, Thomas 1 ; Ellenberg, Jordan S 2 ; Farb, Benson 3 ; Nagpal, Rohit 2

1 Department of Mathematics, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
2 Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53706, USA
3 Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637, USA
@article{GT_2014_18_5_a5,
     author = {Church, Thomas and Ellenberg, Jordan S and Farb, Benson and Nagpal, Rohit},
     title = {FI-modules over {Noetherian} rings},
     journal = {Geometry & topology},
     pages = {2951--2984},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2014},
     doi = {10.2140/gt.2014.18.2951},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2951/}
}
TY  - JOUR
AU  - Church, Thomas
AU  - Ellenberg, Jordan S
AU  - Farb, Benson
AU  - Nagpal, Rohit
TI  - FI-modules over Noetherian rings
JO  - Geometry & topology
PY  - 2014
SP  - 2951
EP  - 2984
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2951/
DO  - 10.2140/gt.2014.18.2951
ID  - GT_2014_18_5_a5
ER  - 
%0 Journal Article
%A Church, Thomas
%A Ellenberg, Jordan S
%A Farb, Benson
%A Nagpal, Rohit
%T FI-modules over Noetherian rings
%J Geometry & topology
%D 2014
%P 2951-2984
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2951/
%R 10.2140/gt.2014.18.2951
%F GT_2014_18_5_a5
Church, Thomas; Ellenberg, Jordan S; Farb, Benson; Nagpal, Rohit. FI-modules over Noetherian rings. Geometry & topology, Tome 18 (2014) no. 5, pp. 2951-2984. doi : 10.2140/gt.2014.18.2951. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2951/

[1] A Borel, J P Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436

[2] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1994)

[3] F Calegari, The stable homology of congruence subgroups,

[4] R Charney, On the problem of homology stability for congruence subgroups, Comm. Algebra 12 (1984) 2081

[5] T Church, J S Ellenberg, Homological properties of $\mathrm{FI}$–modules and stability, in preparation

[6] T Church, J S Ellenberg, B Farb, $\mathrm{FI}$–modules: A new approach to stability for $S_n$–representations, (2012)

[7] T Church, B Farb, Representation theory and homological stability, Adv. Math. 245 (2013) 250

[8] T Church, A Putman, Generating the Johnson filtration,

[9] R Jimenez Rolland, On the cohomology of pure mapping class groups as $\mathrm{FI}$–modules, J. Homotopy Relat. Struct. (2013)

[10] W Lück, Transformation groups and algebraic $K\!$–theory, Lecture Notes in Mathematics 1408, Springer (1989)

[11] A Putman, Stability in the homology of congruence subgroups,

[12] A Putman, S Sam, Representation stability and finite linear groups, (2014)

[13] E Riehl, Categorical homotopy theory, New Mathematical Monographs 24, Cambridge Univ. Press (2014)

[14] S Sam, A Snowden, $\mathrm{GL}$–equivariant modules over polynomial rings in infinitely many variables,

[15] A Snowden, Syzygies of Segre embeddings and $\Delta$–modules, Duke Math. J. 162 (2013) 225

[16] B Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996) 1057

Cité par Sources :