Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
-modules were introduced by the first three authors to encode sequences of representations of symmetric groups. Over a field of characteristic , finite generation of an -module implies representation stability for the corresponding sequence of –representations. In this paper we prove the Noetherian property for -modules over arbitrary Noetherian rings: any sub--module of a finitely generated -module is finitely generated. This lets us extend many results to representations in positive characteristic, and even to integral coefficients. We focus on three major applications of the main theorem: on the integral and mod cohomology of configuration spaces; on diagonal coinvariant algebras in positive characteristic; and on an integral version of Putman’s central stability for homology of congruence subgroups.
Church, Thomas 1 ; Ellenberg, Jordan S 2 ; Farb, Benson 3 ; Nagpal, Rohit 2
@article{GT_2014_18_5_a5, author = {Church, Thomas and Ellenberg, Jordan S and Farb, Benson and Nagpal, Rohit}, title = {FI-modules over {Noetherian} rings}, journal = {Geometry & topology}, pages = {2951--2984}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2014}, doi = {10.2140/gt.2014.18.2951}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2951/} }
TY - JOUR AU - Church, Thomas AU - Ellenberg, Jordan S AU - Farb, Benson AU - Nagpal, Rohit TI - FI-modules over Noetherian rings JO - Geometry & topology PY - 2014 SP - 2951 EP - 2984 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2951/ DO - 10.2140/gt.2014.18.2951 ID - GT_2014_18_5_a5 ER -
%0 Journal Article %A Church, Thomas %A Ellenberg, Jordan S %A Farb, Benson %A Nagpal, Rohit %T FI-modules over Noetherian rings %J Geometry & topology %D 2014 %P 2951-2984 %V 18 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2951/ %R 10.2140/gt.2014.18.2951 %F GT_2014_18_5_a5
Church, Thomas; Ellenberg, Jordan S; Farb, Benson; Nagpal, Rohit. FI-modules over Noetherian rings. Geometry & topology, Tome 18 (2014) no. 5, pp. 2951-2984. doi : 10.2140/gt.2014.18.2951. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2951/
[1] Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436
, ,[2] Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1994)
,[3] The stable homology of congruence subgroups,
,[4] On the problem of homology stability for congruence subgroups, Comm. Algebra 12 (1984) 2081
,[5] Homological properties of $\mathrm{FI}$–modules and stability, in preparation
, ,[6] $\mathrm{FI}$–modules: A new approach to stability for $S_n$–representations, (2012)
, , ,[7] Representation theory and homological stability, Adv. Math. 245 (2013) 250
, ,[8] Generating the Johnson filtration,
, ,[9] On the cohomology of pure mapping class groups as $\mathrm{FI}$–modules, J. Homotopy Relat. Struct. (2013)
,[10] Transformation groups and algebraic $K\!$–theory, Lecture Notes in Mathematics 1408, Springer (1989)
,[11] Stability in the homology of congruence subgroups,
,[12] Representation stability and finite linear groups, (2014)
, ,[13] Categorical homotopy theory, New Mathematical Monographs 24, Cambridge Univ. Press (2014)
,[14] $\mathrm{GL}$–equivariant modules over polynomial rings in infinitely many variables,
, ,[15] Syzygies of Segre embeddings and $\Delta$–modules, Duke Math. J. 162 (2013) 225
,[16] Configuration spaces of algebraic varieties, Topology 35 (1996) 1057
,Cité par Sources :