Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce the notion of –filtrable varieties: projective varieties with a torus action and a finite number of fixed points, such that the cells of the associated Bialynicki-Birula decomposition are all rationally smooth. Our main results develop GKM theory in this setting. We also supply a method for building nice combinatorial bases on the equivariant cohomology of any –filtrable GKM variety. Applications to the theory of group embeddings are provided.
Gonzales, Richard 1
@article{GT_2014_18_1_a7, author = {Gonzales, Richard}, title = {Rational smoothness, cellular decompositions and {GKM} theory}, journal = {Geometry & topology}, pages = {291--326}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2014}, doi = {10.2140/gt.2014.18.291}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.291/} }
Gonzales, Richard. Rational smoothness, cellular decompositions and GKM theory. Geometry & topology, Tome 18 (2014) no. 1, pp. 291-326. doi : 10.2140/gt.2014.18.291. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.291/
[1] Stable reductive varieties, II: Projective case, Adv. Math. 184 (2004) 380
, ,[2] Classes d'Euler équivariantes et points rationnellement lisses, Ann. Inst. Fourier 48 (1998) 861
,[3] Elliptic operators and compact groups, Lecture Notes in Mathematics 401, Springer (1974)
,[4] The index of elliptic operators, II, Ann. of Math. 87 (1968) 531
, ,[5] Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973) 480
,[6] Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 667
,[7] Seminar on transformation groups, Annals of Mathematics Studies 46, Princeton Univ. Press (1960)
,[8] The orbifold Chow ring of toric Deligne–Mumford stacks, J. Amer. Math. Soc. 18 (2005) 193
, , ,[9] Equivariant Chow groups for torus actions, Transform. Groups 2 (1997) 225
,[10] The behaviour at infinity of the Bruhat decomposition, Comment. Math. Helv. 73 (1998) 137
,[11] Equivariant cohomology and equivariant intersection theory, from: "Representation theories and algebraic geometry" (editors A Broer, G Sabidussi), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514, Kluwer Acad. Publ. (1998) 1
,[12] Rational smoothness and fixed points of torus actions, Transform. Groups 4 (1999) 127
,[13] Poincaré duality and equivariant (co)homology, Michigan Math. J. 48 (2000) 77
,[14] Local structure of algebraic monoids, Mosc. Math. J. 8 (2008) 647, 846
,[15] The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, from: "Algebraic groups and their generalizations: Classical methods" (editors W J Haboush, B J Parshall), Proc. Sympos. Pure Math. 56, Amer. Math. Soc. (1994) 53
,[16] The topological Schur lemma and related results, Ann. of Math. 100 (1974) 307
, ,[17] Representation theory and complex geometry, Birkhäuser (1997)
, ,[18] The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978) 85
,[19] Singularities and topology of hypersurfaces, Universitext, Springer (1992)
,[20] Equivariant cohomology of rationally smooth group embeddings
,[21] Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998) 25
, , ,[22] Morse theory on Hamiltonian $G$–spaces and equivariant $K$–theory, J. Differential Geom. 66 (2004) 345
, ,[23] Computation of generalized equivariant cohomologies of Kac–Moody flag varieties, Adv. Math. 197 (2005) 198
, , ,[24] Algebraic geometry, Graduate Texts in Mathematics 52, Springer (1977)
,[25] Cohomology theory of topological transformation groups, Ergeb. Math. Grenzgeb. 85, Springer (1975)
,[26] Intersection homology and torus actions, J. Amer. Math. Soc. 1 (1988) 385
,[27] A characterization of homology manifolds, J. London Math. Soc. 16 (1977) 149
,[28] On the $3$–dimensional Brieskorn manifolds $M(p,q,r)$, from: "Knots, groups, and $3$–manifolds (Papers dedicated to the memory of R H Fox)" (editor L P Neuwirth), Ann. of Math. Studies 84, Princeton Univ. Press (1975) 175
,[29] Mixed Hodge structures, Ergeb. Math. Grenzgeb. 52, Springer (2008)
, ,[30] The spectrum of an equivariant cohomology ring, I, II, Ann. of Math. 94 (1971) 549, 573
,[31] Linear algebraic monoids, Encyclopaedia of Mathematical Sciences 134, Springer (2005)
,[32] The $H$–polynomial of a semisimple monoid, J. Algebra 319 (2008) 360
,[33] Descent systems for Bruhat posets, J. Algebraic Combin. 29 (2009) 413
,[34] Rationally smooth algebraic monoids, Semigroup Forum 78 (2009) 384
,[35] The $H$–polynomial of an irreducible representation, J. Algebra 332 (2011) 159
,[36] Equivariant formality for actions of torus groups, Canad. J. Math. 56 (2004) 1290
,[37] Equivariant $K$–theory, Inst. Hautes Études Sci. Publ. Math. (1968) 129
,[38] Basic algebraic geometry, 1: Varieties in projective space, Springer (1994)
,[39] Equivariant completion, Journal Math. Kyoto Univ. 14 (1974) 1
,[40] Equivariant $K$–theory of compactifications of algebraic groups, Transform. Groups 12 (2007) 371
,[41] Higher algebraic $K$–theory for actions of diagonalizable groups, Invent. Math. 153 (2003) 1
, ,[42] Formality of equivariant intersection cohomology of algebraic varieties, Proc. Amer. Math. Soc. 131 (2003) 2633
,Cité par Sources :