Rational smoothness, cellular decompositions and GKM theory
Geometry & topology, Tome 18 (2014) no. 1, pp. 291-326.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce the notion of –filtrable varieties: projective varieties with a torus action and a finite number of fixed points, such that the cells of the associated Bialynicki-Birula decomposition are all rationally smooth. Our main results develop GKM theory in this setting. We also supply a method for building nice combinatorial bases on the equivariant cohomology of any –filtrable GKM variety. Applications to the theory of group embeddings are provided.

DOI : 10.2140/gt.2014.18.291
Classification : 14F43, 14L30, 55N91, 14M15
Keywords: rational smoothness, algebraic torus actions, GKM theory, equivariant cohomology, algebraic monoids, group embeddings

Gonzales, Richard 1

1 Faculty of Engineering and Natural Sciences, Sabancı Üniversitesi, Orhanli, Tuzla, 34956 Istanbul, Turkey
@article{GT_2014_18_1_a7,
     author = {Gonzales, Richard},
     title = {Rational smoothness, cellular decompositions and {GKM} theory},
     journal = {Geometry & topology},
     pages = {291--326},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     doi = {10.2140/gt.2014.18.291},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.291/}
}
TY  - JOUR
AU  - Gonzales, Richard
TI  - Rational smoothness, cellular decompositions and GKM theory
JO  - Geometry & topology
PY  - 2014
SP  - 291
EP  - 326
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.291/
DO  - 10.2140/gt.2014.18.291
ID  - GT_2014_18_1_a7
ER  - 
%0 Journal Article
%A Gonzales, Richard
%T Rational smoothness, cellular decompositions and GKM theory
%J Geometry & topology
%D 2014
%P 291-326
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.291/
%R 10.2140/gt.2014.18.291
%F GT_2014_18_1_a7
Gonzales, Richard. Rational smoothness, cellular decompositions and GKM theory. Geometry & topology, Tome 18 (2014) no. 1, pp. 291-326. doi : 10.2140/gt.2014.18.291. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.291/

[1] V Alexeev, M Brion, Stable reductive varieties, II: Projective case, Adv. Math. 184 (2004) 380

[2] A Arabia, Classes d'Euler équivariantes et points rationnellement lisses, Ann. Inst. Fourier 48 (1998) 861

[3] M F Atiyah, Elliptic operators and compact groups, Lecture Notes in Mathematics 401, Springer (1974)

[4] M F Atiyah, G B Segal, The index of elliptic operators, II, Ann. of Math. 87 (1968) 531

[5] A Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973) 480

[6] A Białynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 667

[7] A Borel, Seminar on transformation groups, Annals of Mathematics Studies 46, Princeton Univ. Press (1960)

[8] L A Borisov, L Chen, G G Smith, The orbifold Chow ring of toric Deligne–Mumford stacks, J. Amer. Math. Soc. 18 (2005) 193

[9] M Brion, Equivariant Chow groups for torus actions, Transform. Groups 2 (1997) 225

[10] M Brion, The behaviour at infinity of the Bruhat decomposition, Comment. Math. Helv. 73 (1998) 137

[11] M Brion, Equivariant cohomology and equivariant intersection theory, from: "Representation theories and algebraic geometry" (editors A Broer, G Sabidussi), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514, Kluwer Acad. Publ. (1998) 1

[12] M Brion, Rational smoothness and fixed points of torus actions, Transform. Groups 4 (1999) 127

[13] M Brion, Poincaré duality and equivariant (co)homology, Michigan Math. J. 48 (2000) 77

[14] M Brion, Local structure of algebraic monoids, Mosc. Math. J. 8 (2008) 647, 846

[15] J B Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, from: "Algebraic groups and their generalizations: Classical methods" (editors W J Haboush, B J Parshall), Proc. Sympos. Pure Math. 56, Amer. Math. Soc. (1994) 53

[16] T Chang, T Skjelbred, The topological Schur lemma and related results, Ann. of Math. 100 (1974) 307

[17] N Chriss, V Ginzburg, Representation theory and complex geometry, Birkhäuser (1997)

[18] V I Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978) 85

[19] A Dimca, Singularities and topology of hypersurfaces, Universitext, Springer (1992)

[20] R Gonzales, Equivariant cohomology of rationally smooth group embeddings

[21] M Goresky, R Kottwitz, R Macpherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998) 25

[22] V Guillemin, M Kogan, Morse theory on Hamiltonian $G$–spaces and equivariant $K$–theory, J. Differential Geom. 66 (2004) 345

[23] M Harada, A Henriques, T S Holm, Computation of generalized equivariant cohomologies of Kac–Moody flag varieties, Adv. Math. 197 (2005) 198

[24] R Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer (1977)

[25] W Y Hsiang, Cohomology theory of topological transformation groups, Ergeb. Math. Grenzgeb. 85, Springer (1975)

[26] F Kirwan, Intersection homology and torus actions, J. Amer. Math. Soc. 1 (1988) 385

[27] C Mccrory, A characterization of homology manifolds, J. London Math. Soc. 16 (1977) 149

[28] J Milnor, On the $3$–dimensional Brieskorn manifolds $M(p,q,r)$, from: "Knots, groups, and $3$–manifolds (Papers dedicated to the memory of R H Fox)" (editor L P Neuwirth), Ann. of Math. Studies 84, Princeton Univ. Press (1975) 175

[29] C A M Peters, J H M Steenbrink, Mixed Hodge structures, Ergeb. Math. Grenzgeb. 52, Springer (2008)

[30] D Quillen, The spectrum of an equivariant cohomology ring, I, II, Ann. of Math. 94 (1971) 549, 573

[31] L E Renner, Linear algebraic monoids, Encyclopaedia of Mathematical Sciences 134, Springer (2005)

[32] L E Renner, The $H$–polynomial of a semisimple monoid, J. Algebra 319 (2008) 360

[33] L E Renner, Descent systems for Bruhat posets, J. Algebraic Combin. 29 (2009) 413

[34] L E Renner, Rationally smooth algebraic monoids, Semigroup Forum 78 (2009) 384

[35] L E Renner, The $H$–polynomial of an irreducible representation, J. Algebra 332 (2011) 159

[36] L Scull, Equivariant formality for actions of torus groups, Canad. J. Math. 56 (2004) 1290

[37] G Segal, Equivariant $K$–theory, Inst. Hautes Études Sci. Publ. Math. (1968) 129

[38] I R Shafarevich, Basic algebraic geometry, 1: Varieties in projective space, Springer (1994)

[39] H Sumihiro, Equivariant completion, Journal Math. Kyoto Univ. 14 (1974) 1

[40] V Uma, Equivariant $K$–theory of compactifications of algebraic groups, Transform. Groups 12 (2007) 371

[41] G Vezzosi, A Vistoli, Higher algebraic $K$–theory for actions of diagonalizable groups, Invent. Math. 153 (2003) 1

[42] A Weber, Formality of equivariant intersection cohomology of algebraic varieties, Proc. Amer. Math. Soc. 131 (2003) 2633

Cité par Sources :