Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the asymptotic behaviour of doubly periodic instantons with square-integrable curvature. Then we establish an equivalence given by the Nahm transform between the doubly periodic instantons with square integrable curvature and wild harmonic bundles on the dual torus. We also introduce algebraic Nahm transforms, which describe the transformations of the underlying filtered objects.
Mochizuki, Takuro 1
@article{GT_2014_18_5_a4, author = {Mochizuki, Takuro}, title = {Asymptotic behaviour and the {Nahm} transform of doubly periodic instantons with square integrable curvature}, journal = {Geometry & topology}, pages = {2823--2949}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2014}, doi = {10.2140/gt.2014.18.2823}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2823/} }
TY - JOUR AU - Mochizuki, Takuro TI - Asymptotic behaviour and the Nahm transform of doubly periodic instantons with square integrable curvature JO - Geometry & topology PY - 2014 SP - 2823 EP - 2949 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2823/ DO - 10.2140/gt.2014.18.2823 ID - GT_2014_18_5_a4 ER -
%0 Journal Article %A Mochizuki, Takuro %T Asymptotic behaviour and the Nahm transform of doubly periodic instantons with square integrable curvature %J Geometry & topology %D 2014 %P 2823-2949 %V 18 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2823/ %R 10.2140/gt.2014.18.2823 %F GT_2014_18_5_a4
Mochizuki, Takuro. Asymptotic behaviour and the Nahm transform of doubly periodic instantons with square integrable curvature. Geometry & topology, Tome 18 (2014) no. 5, pp. 2823-2949. doi : 10.2140/gt.2014.18.2823. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2823/
[1] An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938) 359
,[2] Algebraic Nahm transform for Parabolic Higgs bundles on $\mathbb{P}^1$, Geom. Topol. 18 (2014) 2487
, ,[3] Fourier transform and middle convolution for irregular $D$–modules
,[4] Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957) 414
,[5] Fourier–Mukai and Nahm transforms in geometry and mathematical physics, Progress in Math. 276, Birkhäuser (2009)
, , ,[6] Periods for irregular connections on curves, preprint
, , , ,[7] Wild nonabelian Hodge theory on curves, Compos. Math. 140 (2004) 179
, ,[8] Asymptotic behaviour and the moduli space of doubly-periodic instantons, J. Eur. Math. Soc. (JEMS) 3 (2001) 335
, ,[9] Local Fourier transforms and rigidity for $ D$–modules, Asian J. Math. 8 (2004) 587
, ,[10] A Fourier transformation for Higgs bundles, J. Reine Angew. Math. 591 (2006) 21
,[11] Nahm's transformation for instantons, Comm. Math. Phys. 122 (1989) 267
, ,[12] Analytic aspects of periodic instantons, PhD thesis, Mass. Inst. of Tech. (2004)
,[13] Nahm's equations and the classification of monopoles, Comm. Math. Phys. 96 (1984) 387
,[14] The geometry of four-manifolds, Oxford Math. Monographs, Oxford University Press (1990)
, ,[15] Calculation of local Fourier transforms for formal connections, Sci. China Ser. A 52 (2009) 2195
,[16] Doubly periodic instantons and their constituents, Phys. Rev. D 69 (2004) 065006, 12
, ,[17] Calculation of $\ell$–adic local Fourier transformations, Manuscripta Math. 133 (2010) 409
,[18] An $L^2$ Dolbeault lemma and its applications, Publ. Res. Inst. Math. Sci. 28 (1992) 845
,[19] Microlocalization and stationary phase, Asian J. Math. 8 (2004) 747
,[20] Calculation of local formal Fourier transforms, Ark. Mat. 51 (2013) 71
,[21] On the construction of monopoles, Comm. Math. Phys. 89 (1983) 145
,[22] Monopoles, minimal surfaces and algebraic curves, Séminaire de Mathématiques Supérieures (Seminar on Higher Math.) 105, Presses de l’Université de Montréal, Montreal, QC (1987) 94
,[23] The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59
,[24] Construction of doubly-periodic instantons, Comm. Math. Phys. 216 (2001) 1
,[25] Classification and existence of doubly-periodic instantons, Q. J. Math. 53 (2002) 431
,[26] Nahm transform and spectral curves for doubly-periodic instantons, Comm. Math. Phys. 225 (2002) 639
,[27] A survey on Nahm transform, J. Geom. Phys. 52 (2004) 313
,[28] Real analysis, Addison-Wesley (1983)
,[29] Transformation de Fourier generalisée,
,[30] Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. (1987) 131
,[31] Hermitian–Einstein metrics on parabolic stable bundles, Acta Math. Sin. (Engl. Ser.) 15 (1999) 93
, ,[32] Équations différentielles à coefficients polynomiaux, Progress in Math. 96, Birkhäuser (1991)
,[33] Moduli of parabolic stable sheaves, Math. Ann. 293 (1992) 77
, ,[34] Kobayashi–Hitchin correspondence for tame harmonic bundles and an application, Astérisque 309, Soc. Math. France (2006)
,[35] Asymptotic behaviour of tame harmonic bundles and an application to pure twistor $D$–modules, II, Mem. Amer. Math. Soc. 870 (2007)
,[36] Wild harmonic bundles and wild pure twistor $D$–modules, Astérisque 340, Soc. Math. France (2011)
,[37] Duality between $D(X)$ and $D(\hat X)$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981) 153
,[38] Monopoles and Nahm's equations, from: "Einstein metrics and Yang–Mills connections" (editors T Mabuchi, S Mukai), Lecture Notes in Pure and Appl. Math. 145, Dekker (1993) 193
,[39] Sheaves with connection on abelian varieties, Duke Math. J. 84 (1996) 565
,[40] Polarizable twistor $D$–modules, Astérisque 300, Soc. Math. France (2005)
,[41] An explicit stationary phase formula for the local formal Fourier–Laplace transform, from: "Singularities I" (editors J P Brasselet, J L Cisneros-Molina, D Massey, J Seade, B Teissier), Contemp. Math. 474, Amer. Math. Soc. (2008) 309
,[42] The existence of minimal immersions of $2$–spheres, Ann. of Math. 113 (1981) 1
, ,[43] On a generalised Fourier transform of instantons over flat tori, Comm. Math. Phys. 116 (1988) 177
,[44] Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867
,[45] Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990) 713
,[46] Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992) 5
,[47] Techniques of extension of analytic objects, Lecture Notes in Pure and Appl. Math. 8, Marcel Dekker (1974)
,[48] Nahm transform for integrable connections on the Riemann sphere, Mém. Soc. Math. France 110, Soc. Math. France (2007)
,[49] Removable singularities in Yang–Mills fields, Comm. Math. Phys. 83 (1982) 11
,[50] Energy identity for anti-self-dual instantons on $\mathbb C\times\Sigma$, Math. Res. Lett. 13 (2006) 161
,[51] Hodge theory with degenerating coefficients: $L_{2}$ cohomology in the Poincaré metric, Ann. of Math. 109 (1979) 415
,Cité par Sources :