Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct a fully equivariant correspondence between Gromov–Witten and stable pairs descendent theories for toric –folds . Our method uses geometric constraints on descendents, surfaces and the topological vertex. The rationality of the stable pairs descendent theory plays a crucial role in the definition of the correspondence. We prove our correspondence has a non-equivariant limit.
As a result of the construction, we prove an explicit non-equivariant stationary descendent correspondence for (conjectured by MNOP). Using descendent methods, we establish the relative GW/Pairs correspondence for in several basic new log Calabi–Yau geometries. Among the consequences is a rationality constraint for non-equivariant descendent Gromov–Witten series for .
Pandharipande, Rahul 1 ; Pixton, Aaron 2
@article{GT_2014_18_5_a3, author = {Pandharipande, Rahul and Pixton, Aaron}, title = {Gromov{\textendash}Witten/pairs descendent correspondence for toric 3{\textendash}folds}, journal = {Geometry & topology}, pages = {2747--2821}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2014}, doi = {10.2140/gt.2014.18.2747}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2747/} }
TY - JOUR AU - Pandharipande, Rahul AU - Pixton, Aaron TI - Gromov–Witten/pairs descendent correspondence for toric 3–folds JO - Geometry & topology PY - 2014 SP - 2747 EP - 2821 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2747/ DO - 10.2140/gt.2014.18.2747 ID - GT_2014_18_5_a3 ER -
%0 Journal Article %A Pandharipande, Rahul %A Pixton, Aaron %T Gromov–Witten/pairs descendent correspondence for toric 3–folds %J Geometry & topology %D 2014 %P 2747-2821 %V 18 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2747/ %R 10.2140/gt.2014.18.2747 %F GT_2014_18_5_a3
Pandharipande, Rahul; Pixton, Aaron. Gromov–Witten/pairs descendent correspondence for toric 3–folds. Geometry & topology, Tome 18 (2014) no. 5, pp. 2747-2821. doi : 10.2140/gt.2014.18.2747. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2747/
[1] Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601
,[2] The intrinsic normal cone, Invent. Math. 128 (1997) 45
, ,[3] The local Gromov–Witten theory of curves, J. Amer. Math. Soc. 21 (2008) 101
, ,[4] Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173
, ,[5] Instanton calculus and chiral one-point functions in supersymmetric gauge theories, Adv. Theor. Math. Phys. 12 (2008) 1401
, , , ,[6] Localization of virtual classes, Invent. Math. 135 (1999) 487
, ,[7] Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451
, ,[8] Relative Gromov–Witten invariants, Ann. of Math. (2) 157 (2003) 45
, ,[9] Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157
,[10] Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3–folds, Invent. Math. 145 (2001) 151
, ,[11] Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001) 509
,[12] A degeneration formula of GW–invariants, J. Differential Geom. 60 (2002) 199
,[13] Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119
, ,[14] Gromov–Witten theory and Donaldson–Thomas theory. I, Compos. Math. 142 (2006) 1263
, , , ,[15] Gromov–Witten theory and Donaldson–Thomas theory. II, Compos. Math. 142 (2006) 1286
, , , ,[16] Donaldson–Thomas theory of $\mathscr{A}_n\times P^1$, Compos. Math. 145 (2009) 1249
, ,[17] Quantum cohomology of the Hilbert scheme of points on $\mathscr A_n$–resolutions, J. Amer. Math. Soc. 22 (2009) 1055
, ,[18] Gromov–Witten/Donaldson–Thomas correspondence for toric $3$–folds, Invent. Math. 186 (2011) 435
, , , ,[19] A topological view of Gromov–Witten theory, Topology 45 (2006) 887
, ,[20] Curves on $K3$ surfaces and modular forms, J. Topol. 3 (2010) 937
, , ,[21] Descendent transformations from Donaldson–Thomas to Gromov–Witten theory, in preparation
, , ,[22] Hodge integrals and invariants of the unknot, Geom. Topol. 8 (2004) 675
, ,[23] Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2) 163 (2006) 517
, ,[24] Quantum Calabi–Yau and classical crystals, from: "The unity of mathematics", Progr. Math., Birkhäuser (2006) 597
, , ,[25] Descendents on local curves: Stationary theory, from: "Geometry and arithmetic", Eur. Math. Soc. (2012) 283
, ,[26] Gromov–Witten pairs correspondence for the quintic $3$–fold, (2012)
,[27] Descendent theory for stable pairs on toric $3$–folds, J. Math. Soc. Japan 65 (2013) 1337
, ,[28] Descendents on local curves: Rationality, Compos. Math. 149 (2013) 81
, ,[29] The $3$–fold vertex via stable pairs, Geom. Topol. 13 (2009) 1835
, ,[30] Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009) 407
, ,Cité par Sources :