Gromov–Witten/pairs descendent correspondence for toric 3–folds
Geometry & topology, Tome 18 (2014) no. 5, pp. 2747-2821.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a fully equivariant correspondence between Gromov–Witten and stable pairs descendent theories for toric 3–folds X. Our method uses geometric constraints on descendents, An surfaces and the topological vertex. The rationality of the stable pairs descendent theory plays a crucial role in the definition of the correspondence. We prove our correspondence has a non-equivariant limit.

As a result of the construction, we prove an explicit non-equivariant stationary descendent correspondence for X (conjectured by MNOP). Using descendent methods, we establish the relative GW/Pairs correspondence for XD in several basic new log Calabi–Yau geometries. Among the consequences is a rationality constraint for non-equivariant descendent Gromov–Witten series for P3.

DOI : 10.2140/gt.2014.18.2747
Classification : 14N35, 14H60
Keywords: Gromov–Witten, stable pairs, descendents

Pandharipande, Rahul 1 ; Pixton, Aaron 2

1 Departement Mathematik, ETH Zürich, HG G 55, Rämistrasse 101, 8092 Zürich, Switzerland
2 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
@article{GT_2014_18_5_a3,
     author = {Pandharipande, Rahul and Pixton, Aaron},
     title = {Gromov{\textendash}Witten/pairs descendent correspondence for toric 3{\textendash}folds},
     journal = {Geometry & topology},
     pages = {2747--2821},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2014},
     doi = {10.2140/gt.2014.18.2747},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2747/}
}
TY  - JOUR
AU  - Pandharipande, Rahul
AU  - Pixton, Aaron
TI  - Gromov–Witten/pairs descendent correspondence for toric 3–folds
JO  - Geometry & topology
PY  - 2014
SP  - 2747
EP  - 2821
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2747/
DO  - 10.2140/gt.2014.18.2747
ID  - GT_2014_18_5_a3
ER  - 
%0 Journal Article
%A Pandharipande, Rahul
%A Pixton, Aaron
%T Gromov–Witten/pairs descendent correspondence for toric 3–folds
%J Geometry & topology
%D 2014
%P 2747-2821
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2747/
%R 10.2140/gt.2014.18.2747
%F GT_2014_18_5_a3
Pandharipande, Rahul; Pixton, Aaron. Gromov–Witten/pairs descendent correspondence for toric 3–folds. Geometry & topology, Tome 18 (2014) no. 5, pp. 2747-2821. doi : 10.2140/gt.2014.18.2747. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2747/

[1] K Behrend, Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601

[2] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45

[3] J Bryan, R Pandharipande, The local Gromov–Witten theory of curves, J. Amer. Math. Soc. 21 (2008) 101

[4] C Faber, R Pandharipande, Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173

[5] S Fujii, H Kanno, S Moriyama, S Okada, Instanton calculus and chiral one-point functions in supersymmetric gauge theories, Adv. Theor. Math. Phys. 12 (2008) 1401

[6] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487

[7] M Gross, B Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451

[8] E N Ionel, T H Parker, Relative Gromov–Witten invariants, Ann. of Math. (2) 157 (2003) 45

[9] M Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157

[10] A M Li, Y Ruan, Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3–folds, Invent. Math. 145 (2001) 151

[11] J Li, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001) 509

[12] J Li, A degeneration formula of GW–invariants, J. Differential Geom. 60 (2002) 199

[13] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119

[14] D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory. I, Compos. Math. 142 (2006) 1263

[15] D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory. II, Compos. Math. 142 (2006) 1286

[16] D Maulik, A Oblomkov, Donaldson–Thomas theory of $\mathscr{A}_n\times P^1$, Compos. Math. 145 (2009) 1249

[17] D Maulik, A Oblomkov, Quantum cohomology of the Hilbert scheme of points on $\mathscr A_n$–resolutions, J. Amer. Math. Soc. 22 (2009) 1055

[18] D Maulik, A Oblomkov, A Okounkov, R Pandharipande, Gromov–Witten/Donaldson–Thomas correspondence for toric $3$–folds, Invent. Math. 186 (2011) 435

[19] D Maulik, R Pandharipande, A topological view of Gromov–Witten theory, Topology 45 (2006) 887

[20] D Maulik, R Pandharipande, R P Thomas, Curves on $K3$ surfaces and modular forms, J. Topol. 3 (2010) 937

[21] A Oblomkov, A Okounkov, R Pandharipande, Descendent transformations from Donaldson–Thomas to Gromov–Witten theory, in preparation

[22] A Okounkov, R Pandharipande, Hodge integrals and invariants of the unknot, Geom. Topol. 8 (2004) 675

[23] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2) 163 (2006) 517

[24] A Okounkov, N Reshetikhin, C Vafa, Quantum Calabi–Yau and classical crystals, from: "The unity of mathematics", Progr. Math., Birkhäuser (2006) 597

[25] R Pandharipande, A Pixton, Descendents on local curves: Stationary theory, from: "Geometry and arithmetic", Eur. Math. Soc. (2012) 283

[26] A Pandharipande R. And Pixton, Gromov–Witten pairs correspondence for the quintic $3$–fold, (2012)

[27] R Pandharipande, A Pixton, Descendent theory for stable pairs on toric $3$–folds, J. Math. Soc. Japan 65 (2013) 1337

[28] R Pandharipande, A Pixton, Descendents on local curves: Rationality, Compos. Math. 149 (2013) 81

[29] R Pandharipande, R P Thomas, The $3$–fold vertex via stable pairs, Geom. Topol. 13 (2009) 1835

[30] R Pandharipande, R P Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009) 407

Cité par Sources :