On the topology of ending lamination space
Geometry & topology, Tome 18 (2014) no. 5, pp. 2683-2745.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that if S is a finite-type orientable surface of genus g and with p punctures, where 3g + p 5, then (S) is (n 1)–connected and (n 1)–locally connected, where dim(P(S)) = 2n + 1 = 6g + 2p 7. Furthermore, if g = 0, then (S) is homeomorphic to the (p 4)–dimensional Nöbeling space. Finally if n0, then P(S) is connected.

DOI : 10.2140/gt.2014.18.2683
Classification : 57M50, 20F65
Keywords: Nöbeling, lamination

Gabai, David 1

1 Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544, USA
@article{GT_2014_18_5_a2,
     author = {Gabai, David},
     title = {On the topology of ending lamination space},
     journal = {Geometry & topology},
     pages = {2683--2745},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2014},
     doi = {10.2140/gt.2014.18.2683},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2683/}
}
TY  - JOUR
AU  - Gabai, David
TI  - On the topology of ending lamination space
JO  - Geometry & topology
PY  - 2014
SP  - 2683
EP  - 2745
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2683/
DO  - 10.2140/gt.2014.18.2683
ID  - GT_2014_18_5_a2
ER  - 
%0 Journal Article
%A Gabai, David
%T On the topology of ending lamination space
%J Geometry & topology
%D 2014
%P 2683-2745
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2683/
%R 10.2140/gt.2014.18.2683
%F GT_2014_18_5_a2
Gabai, David. On the topology of ending lamination space. Geometry & topology, Tome 18 (2014) no. 5, pp. 2683-2745. doi : 10.2140/gt.2014.18.2683. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2683/

[1] S M Ageev, Axiomatic method of partitions in the theory of Nöbeling spaces, III: Consistency of the system of axioms, Mat. Sb. 198 (2007) 3

[2] I Agol, Tameness of hyperbolic $3$–manifolds,

[3] P Alexandrov, P Urysohn, Uber nulldimensionale Punktmengen, Math. Ann. 98 (1928) 89

[4] L Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960) 94

[5] M Bestvina, Characterizing $k$–dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (1988)

[6] F Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. 124 (1986) 71

[7] M Bonk, O Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266

[8] H G Bothe, Eine Einbettung $m$–dimensionaler Mengen in einen $(m+1)$–dimensionalen absoluten Retrakt, Fund. Math. 52 (1963) 209

[9] J F Brock, R D Canary, Y N Minsky, The classification of Kleinian surface groups, II: The ending lamination conjecture, Ann. of Math. (2) 176 (2012) 1

[10] D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006) 385

[11] R Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics 10, Heldermann (1995)

[12] A Fathi, F Laudenbach, V Poenaru, Travaux de Thurston sur les surfaces, Astérisque 66-67, Soc. Math. France (1991)

[13] D Gabai, Almost filling laminations and the connectivity of ending lamination space, Geom. Topol. 13 (2009) 1017

[14] U Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, from: "Spaces of Kleinian groups" (editors Y N Minsky, M Sakuma, C Series), London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 187

[15] J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157

[16] W J Harvey, Boundary structure of the modular group, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245

[17] S Hensel, P Przytycki, The ending lamination space of the five-punctured sphere is the Nöbeling curve, J. Lond. Math. Soc. (2) 84 (2011) 103

[18] S T Hu, Theory of retracts, Wayne State University Press (1965) 234

[19] W Hurewicz, H Wallman, Dimension Theory, Princeton Math. Series 4, Princeton University Press (1941)

[20] N V Ivanov, Complexes of curves and Teichmüller modular groups, Uspekhi Mat. Nauk 42 (1987) 49, 255

[21] N V Ivanov, L Ji, Infinite topology of curve complexes and non-Poincaré duality of Teichmüller modular groups, Enseign. Math. 54 (2008) 381

[22] K Kawamura, M Levin, E D Tymchatyn, A characterization of $1$–dimensional Nöbeling spaces, from: "Proceedings of the $12^{\text{th}}$ Summer Conference on General Topology and its Applications" (editors R C Flagg, K P Hart, J Norden, E D Tymchatyn, M Tuncali), Topology Proc. 22 (1997) 155

[23] S P Kerckhoff, Simplicial systems for interval exchange maps and measured foliations, Ergodic Theory Dynam. Systems 5 (1985) 257

[24] E Klarreich, The boundary at infinity of the curve complex and the relative mapping class group, preprint

[25] C J Leininger, M Mj, S Schleimer, The universal Cannon–Thurston maps and the boundary of the curve complex,

[26] C J Leininger, S Schleimer, Connectivity of the space of ending laminations, Duke Math. J. 150 (2009) 533

[27] M Levin, Characterizing Nöbeling spaces,

[28] F Luo, Automorphisms of the complex of curves, Topology 39 (2000) 283

[29] H Masur, Interval exchange transformations and measured foliations, Ann. of Math. 115 (1982) 169

[30] H A Masur, Y N Minsky, Geometry of the complex of curves, I: Hyperbolicity, Invent. Math. 138 (1999) 103

[31] K Menger, Uber umfassendste $n$–dimensionale Mengen, Proc. Akad. Wetensch. Amst. 29 (1926) 1125

[32] L Mosher, Train track expansions of measured foliations, preprint

[33] A Nagórko, Characterization and topological rigidity of Nöbeling manifolds, Mem. Amer. Math. Soc. 223 (2013)

[34] G Nöbeling, Über eine $n$–dimensionale Universalmenge im $R^{2n+1}$, Math. Ann. 104 (1931) 71

[35] R C Penner, J L Harer, Combinatorics of train tracks, Annals of Math. Studies 125, Princeton Univ. Press (1992)

[36] K Rafi, S Schleimer, Curve complexes with connected boundary are rigid,

[37] W P Thurston, Hyperbolic Structures on $3$–manifolds, II: Surface groups and $3$–manifolds which fiber over the circle,

[38] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)

[39] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417

[40] W P Thurston, Minimal stretch maps between hyperbolic surfaces, (1998)

[41] W A Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. 115 (1982) 201

[42] X Zhu, F Bonahon, The metric space of geodesic laminations on a surface, I, Geom. Topol. 8 (2004) 539

Cité par Sources :