Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that if is a finite-type orientable surface of genus and with punctures, where , then is –connected and –locally connected, where . Furthermore, if , then is homeomorphic to the –dimensional Nöbeling space. Finally if , then is connected.
Gabai, David 1
@article{GT_2014_18_5_a2, author = {Gabai, David}, title = {On the topology of ending lamination space}, journal = {Geometry & topology}, pages = {2683--2745}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2014}, doi = {10.2140/gt.2014.18.2683}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2683/} }
Gabai, David. On the topology of ending lamination space. Geometry & topology, Tome 18 (2014) no. 5, pp. 2683-2745. doi : 10.2140/gt.2014.18.2683. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2683/
[1] Axiomatic method of partitions in the theory of Nöbeling spaces, III: Consistency of the system of axioms, Mat. Sb. 198 (2007) 3
,[2] Tameness of hyperbolic $3$–manifolds,
,[3] Uber nulldimensionale Punktmengen, Math. Ann. 98 (1928) 89
, ,[4] Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960) 94
,[5] Characterizing $k$–dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (1988)
,[6] Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. 124 (1986) 71
,[7] Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266
, ,[8] Eine Einbettung $m$–dimensionaler Mengen in einen $(m+1)$–dimensionalen absoluten Retrakt, Fund. Math. 52 (1963) 209
,[9] The classification of Kleinian surface groups, II: The ending lamination conjecture, Ann. of Math. (2) 176 (2012) 1
, , ,[10] Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006) 385
, ,[11] Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics 10, Heldermann (1995)
,[12] Travaux de Thurston sur les surfaces, Astérisque 66-67, Soc. Math. France (1991)
, , ,[13] Almost filling laminations and the connectivity of ending lamination space, Geom. Topol. 13 (2009) 1017
,[14] Train tracks and the Gromov boundary of the complex of curves, from: "Spaces of Kleinian groups" (editors Y N Minsky, M Sakuma, C Series), London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 187
,[15] The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157
,[16] Boundary structure of the modular group, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245
,[17] The ending lamination space of the five-punctured sphere is the Nöbeling curve, J. Lond. Math. Soc. (2) 84 (2011) 103
, ,[18] Theory of retracts, Wayne State University Press (1965) 234
,[19] Dimension Theory, Princeton Math. Series 4, Princeton University Press (1941)
, ,[20] Complexes of curves and Teichmüller modular groups, Uspekhi Mat. Nauk 42 (1987) 49, 255
,[21] Infinite topology of curve complexes and non-Poincaré duality of Teichmüller modular groups, Enseign. Math. 54 (2008) 381
, ,[22] A characterization of $1$–dimensional Nöbeling spaces, from: "Proceedings of the $12^{\text{th}}$ Summer Conference on General Topology and its Applications" (editors R C Flagg, K P Hart, J Norden, E D Tymchatyn, M Tuncali), Topology Proc. 22 (1997) 155
, , ,[23] Simplicial systems for interval exchange maps and measured foliations, Ergodic Theory Dynam. Systems 5 (1985) 257
,[24] The boundary at infinity of the curve complex and the relative mapping class group, preprint
,[25] The universal Cannon–Thurston maps and the boundary of the curve complex,
, , ,[26] Connectivity of the space of ending laminations, Duke Math. J. 150 (2009) 533
, ,[27] Characterizing Nöbeling spaces,
,[28] Automorphisms of the complex of curves, Topology 39 (2000) 283
,[29] Interval exchange transformations and measured foliations, Ann. of Math. 115 (1982) 169
,[30] Geometry of the complex of curves, I: Hyperbolicity, Invent. Math. 138 (1999) 103
, ,[31] Uber umfassendste $n$–dimensionale Mengen, Proc. Akad. Wetensch. Amst. 29 (1926) 1125
,[32] Train track expansions of measured foliations, preprint
,[33] Characterization and topological rigidity of Nöbeling manifolds, Mem. Amer. Math. Soc. 223 (2013)
,[34] Über eine $n$–dimensionale Universalmenge im $R^{2n+1}$, Math. Ann. 104 (1931) 71
,[35] Combinatorics of train tracks, Annals of Math. Studies 125, Princeton Univ. Press (1992)
, ,[36] Curve complexes with connected boundary are rigid,
, ,[37] Hyperbolic Structures on $3$–manifolds, II: Surface groups and $3$–manifolds which fiber over the circle,
,[38] The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
,[39] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417
,[40] Minimal stretch maps between hyperbolic surfaces, (1998)
,[41] Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. 115 (1982) 201
,[42] The metric space of geodesic laminations on a surface, I, Geom. Topol. 8 (2004) 539
, ,Cité par Sources :