Computing HF by factoring mapping classes
Geometry & topology, Tome 18 (2014) no. 5, pp. 2547-2681.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Bordered Heegaard Floer homology is an invariant for 3–manifolds with boundary. In particular, this invariant associates to a handle decomposition of a surface F a differential graded algebra, and to an arc-slide between two handle decompositions, a bimodule over the two algebras. In this paper, we describe these bimodules for arc-slides explicitly, and then use them to give a combinatorial description of HF̂ of a closed 3–manifold, as well as the bordered Floer homology of any 3–manifold with boundary.

DOI : 10.2140/gt.2014.18.2547
Classification : 57M27, 53D40
Keywords: Heegaard Floer homology, mapping class group, arc-slides

Lipshitz, Robert 1 ; Ozsváth, Peter S 1 ; Thurston, Dylan P 1

1 Department of Mathematics, Columbia University, MC 4425, 2990 Broadway, New York, NY 10027, USA
@article{GT_2014_18_5_a1,
     author = {Lipshitz, Robert and Ozsv\'ath, Peter S and Thurston, Dylan P},
     title = {Computing {HF} by factoring mapping classes},
     journal = {Geometry & topology},
     pages = {2547--2681},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2014},
     doi = {10.2140/gt.2014.18.2547},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2547/}
}
TY  - JOUR
AU  - Lipshitz, Robert
AU  - Ozsváth, Peter S
AU  - Thurston, Dylan P
TI  - Computing HF by factoring mapping classes
JO  - Geometry & topology
PY  - 2014
SP  - 2547
EP  - 2681
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2547/
DO  - 10.2140/gt.2014.18.2547
ID  - GT_2014_18_5_a1
ER  - 
%0 Journal Article
%A Lipshitz, Robert
%A Ozsváth, Peter S
%A Thurston, Dylan P
%T Computing HF by factoring mapping classes
%J Geometry & topology
%D 2014
%P 2547-2681
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2547/
%R 10.2140/gt.2014.18.2547
%F GT_2014_18_5_a1
Lipshitz, Robert; Ozsváth, Peter S; Thurston, Dylan P. Computing HF by factoring mapping classes. Geometry & topology, Tome 18 (2014) no. 5, pp. 2547-2681. doi : 10.2140/gt.2014.18.2547. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2547/

[1] J E Andersen, A J Bene, R C Penner, Groupoid extensions of mapping class representations for bordered surfaces, Topology Appl. 156 (2009) 2713

[2] A J Bene, A chord diagrammatic presentation of the mapping class group of a once bordered surface, Geom. Dedicata 144 (2010) 171

[3] B Keller, A brief introduction to $A$–infinity algebras

[4] R Lipshitz, A technology demonstration of a package to compute Heegaard Floer invariants using bordered Floer homology

[5] R Lipshitz, P S Ozsváth, D P Thurston, Bimodules in bordered Heegaard Floer homology,

[6] R Lipshitz, P S Ozsváth, D P Thurston, Bordered Heegaard Floer homology: Invariance and pairing,

[7] R Lipshitz, P S Ozsváth, D P Thurston, Computing cobordism maps with bordered Floer homology, in preparation

[8] R Lipshitz, P S Ozsváth, D P Thurston, Heegaard Floer homology as morphism spaces, Quantum Topol. 2 (2011) 381

[9] P S Ozsváth, A I Stipsicz, Z Szabó, Combinatorial Heegaard Floer homology and nice Heegaard diagrams,

[10] P S Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311

[11] P S Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027

[12] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[13] S Sarkar, J Wang, An algorithm for computing some Heegaard Floer homologies, Ann. of Math. 171 (2010) 1213

[14] W A Stein, Et Al, Sage mathematics software (version $5.9$)

[15] R Zarev, Bordered Floer homology for sutured manifolds,

Cité par Sources :