Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Bordered Heegaard Floer homology is an invariant for –manifolds with boundary. In particular, this invariant associates to a handle decomposition of a surface a differential graded algebra, and to an arc-slide between two handle decompositions, a bimodule over the two algebras. In this paper, we describe these bimodules for arc-slides explicitly, and then use them to give a combinatorial description of of a closed –manifold, as well as the bordered Floer homology of any –manifold with boundary.
Lipshitz, Robert 1 ; Ozsváth, Peter S 1 ; Thurston, Dylan P 1
@article{GT_2014_18_5_a1, author = {Lipshitz, Robert and Ozsv\'ath, Peter S and Thurston, Dylan P}, title = {Computing {HF} by factoring mapping classes}, journal = {Geometry & topology}, pages = {2547--2681}, publisher = {mathdoc}, volume = {18}, number = {5}, year = {2014}, doi = {10.2140/gt.2014.18.2547}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2547/} }
TY - JOUR AU - Lipshitz, Robert AU - Ozsváth, Peter S AU - Thurston, Dylan P TI - Computing HF by factoring mapping classes JO - Geometry & topology PY - 2014 SP - 2547 EP - 2681 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2547/ DO - 10.2140/gt.2014.18.2547 ID - GT_2014_18_5_a1 ER -
%0 Journal Article %A Lipshitz, Robert %A Ozsváth, Peter S %A Thurston, Dylan P %T Computing HF by factoring mapping classes %J Geometry & topology %D 2014 %P 2547-2681 %V 18 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2547/ %R 10.2140/gt.2014.18.2547 %F GT_2014_18_5_a1
Lipshitz, Robert; Ozsváth, Peter S; Thurston, Dylan P. Computing HF by factoring mapping classes. Geometry & topology, Tome 18 (2014) no. 5, pp. 2547-2681. doi : 10.2140/gt.2014.18.2547. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2547/
[1] Groupoid extensions of mapping class representations for bordered surfaces, Topology Appl. 156 (2009) 2713
, , ,[2] A chord diagrammatic presentation of the mapping class group of a once bordered surface, Geom. Dedicata 144 (2010) 171
,[3] A brief introduction to $A$–infinity algebras
,[4] A technology demonstration of a package to compute Heegaard Floer invariants using bordered Floer homology
,[5] Bimodules in bordered Heegaard Floer homology,
, , ,[6] Bordered Heegaard Floer homology: Invariance and pairing,
, , ,[7] Computing cobordism maps with bordered Floer homology, in preparation
, , ,[8] Heegaard Floer homology as morphism spaces, Quantum Topol. 2 (2011) 381
, , ,[9] Combinatorial Heegaard Floer homology and nice Heegaard diagrams,
, , ,[10] Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311
, ,[11] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027
, ,[12] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[13] An algorithm for computing some Heegaard Floer homologies, Ann. of Math. 171 (2010) 1213
, ,[14] Sage mathematics software (version $5.9$)
, ,[15] Bordered Floer homology for sutured manifolds,
,Cité par Sources :