Algebraic Nahm transform for parabolic Higgs bundles on ℙ1
Geometry & topology, Tome 18 (2014) no. 5, pp. 2487-2545.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We formulate the Nahm transform in the context of parabolic Higgs bundles on 1 and extend its scope in completely algebraic terms. This transform requires parabolic Higgs bundles to satisfy an admissibility condition and allows Higgs fields to have poles of arbitrary order and arbitrary behavior. Our methods are constructive in nature and examples are provided. The extended Nahm transform is established as an algebraic duality between moduli spaces of parabolic Higgs bundles. The guiding principle behind the construction is to investigate the behavior of spectral data near the poles of Higgs fields.

DOI : 10.2140/gt.2014.18.2487
Classification : 14H60, 14E05, 14J26
Keywords: parabolic Higgs bundle, integral transform, birational geometry, spectral sheaf

Aker, Kürşat 1 ; Szabó, Szilárd 2

1 Middle East Technical University, Northern Cyprus Campus, Kalkanlı, Güzelyurt, KKTC, 10 Mersin, Turkey
2 Department of Mathematics, Budapest University of Technology and Economics, Egry J. u. 1, H. ép., Budapest, 1111, Hungary
@article{GT_2014_18_5_a0,
     author = {Aker, K\"ur\c{s}at and Szab\'o, Szil\'ard},
     title = {Algebraic {Nahm} transform for parabolic {Higgs} bundles on {\ensuremath{\mathbb{P}}1}},
     journal = {Geometry & topology},
     pages = {2487--2545},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2014},
     doi = {10.2140/gt.2014.18.2487},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2487/}
}
TY  - JOUR
AU  - Aker, Kürşat
AU  - Szabó, Szilárd
TI  - Algebraic Nahm transform for parabolic Higgs bundles on ℙ1
JO  - Geometry & topology
PY  - 2014
SP  - 2487
EP  - 2545
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2487/
DO  - 10.2140/gt.2014.18.2487
ID  - GT_2014_18_5_a0
ER  - 
%0 Journal Article
%A Aker, Kürşat
%A Szabó, Szilárd
%T Algebraic Nahm transform for parabolic Higgs bundles on ℙ1
%J Geometry & topology
%D 2014
%P 2487-2545
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2487/
%R 10.2140/gt.2014.18.2487
%F GT_2014_18_5_a0
Aker, Kürşat; Szabó, Szilárd. Algebraic Nahm transform for parabolic Higgs bundles on ℙ1. Geometry & topology, Tome 18 (2014) no. 5, pp. 2487-2545. doi : 10.2140/gt.2014.18.2487. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2487/

[1] A Beauville, M S Narasimhan, S Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989) 169

[2] O Biquard, P Boalch, Wild nonabelian Hodge theory on curves, Compos. Math. 140 (2004) 179

[3] H U Boden, K Yokogawa, Moduli spaces of parabolic Higgs bundles and parabolic $K(D)$ pairs over smooth curves, I, Internat. J. Math. 7 (1996) 573

[4] P J Braam, P Van Baal, Nahm's transformation for instantons, Comm. Math. Phys. 122 (1989) 267

[5] D Huybrechts, M Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics E31, Friedr. Vieweg Sohn (1997)

[6] M Jardim, A survey on Nahm transform, J. Geom. Phys. 52 (2004) 313

[7] B Malgrange, Équations différentielles à coefficients polynomiaux, Progress in Mathematics 96, Birkhäuser (1991)

[8] V B Mehta, C S Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980) 205

[9] T Mochizuki, Wild harmonic bundles and wild pure twistor $D$–modules, Astérisque 340, Soc. Math. France (2011)

[10] S Szabó, Nahm transform for integrable connections on the Riemann sphere, Mém. Soc. Math. Fr. 110 (2007) 1

[11] S Szabó, Nahm transform and parabolic minimal Laplace transform, J. Geom. Phys. 62 (2012) 2241

[12] K Yokogawa, Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves, J. Math. Kyoto Univ. 33 (1993) 451

Cité par Sources :