Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this short note, we show that homogeneous Ricci solitons are algebraic. As an application, we see that the generalized Alekseevskii conjecture is equivalent to the Alekseevskii conjecture.
Jablonski, Michael 1
@article{GT_2014_18_4_a11, author = {Jablonski, Michael}, title = {Homogeneous {Ricci} solitons are algebraic}, journal = {Geometry & topology}, pages = {2477--2486}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2014}, doi = {10.2140/gt.2014.18.2477}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2477/} }
Jablonski, Michael. Homogeneous Ricci solitons are algebraic. Geometry & topology, Tome 18 (2014) no. 4, pp. 2477-2486. doi : 10.2140/gt.2014.18.2477. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2477/
[1] Structure of homogeneous Riemannian spaces with zero Ricci curvature, Funkcional. Anal. i Priložen. 9 (1975) 5
, ,[2] Einstein manifolds, Ergeb. Math. Grenzgeb. 10, Springer, Berlin (1987)
,[3] The Ricci flow: An introduction, Mathematical Surveys and Monographs 110, Amer. Math. Soc. (2004)
, ,[4] Warped product Einstein metrics on homogeneous spaces and homogeneous Ricci solitons,
, , ,[5] Concerning the existence of Einstein and Ricci soliton metrics on solvable Lie groups, Geom. Topol. 15 (2011) 735
,[6] Moduli of Einstein and non-Einstein nilradicals, Geom. Dedicata 152 (2011) 63
,[7] Homogeneous Ricci solitons,
,[8] Strongly solvable spaces,
,[9] The scalar curvature of left-invariant Riemannian metrics, Indiana Univ. Math. J. 20 (1970/1971) 1125
,[10] On homogeneous warped product Einstein metrics,
,[11] On homogeneous Ricci solitons, Q. J. Math. 65 (2014) 399
, ,[12] Structure Of homogeneous Ricci solitons and the Alekseevskii conjecture,
, ,[13] Ricci soliton homogeneous nilmanifolds, Math. Ann. 319 (2001) 715
,[14] The Ricci flow for simply connected nilmanifolds, Comm. Anal. Geom. 19 (2011) 831
,[15] Dimensional reduction and the long-time behavior of Ricci flow, Comment. Math. Helv. 85 (2010) 485
,[16] On gradient Ricci solitons with symmetry, Proc. Amer. Math. Soc. 137 (2009) 2085
, ,Cité par Sources :