Homogeneous Ricci solitons are algebraic
Geometry & topology, Tome 18 (2014) no. 4, pp. 2477-2486.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this short note, we show that homogeneous Ricci solitons are algebraic. As an application, we see that the generalized Alekseevskii conjecture is equivalent to the Alekseevskii conjecture.

DOI : 10.2140/gt.2014.18.2477
Classification : 53C25, 22E25, 53C30
Keywords: homogeneous, Ricci soliton, algebraic soliton, Einstein metric, Alekseevskii conjecture

Jablonski, Michael 1

1 Department of Mathematics, University of Oklahoma, Norman, OK 73019-3103, USA
@article{GT_2014_18_4_a11,
     author = {Jablonski, Michael},
     title = {Homogeneous {Ricci} solitons are algebraic},
     journal = {Geometry & topology},
     pages = {2477--2486},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2014},
     doi = {10.2140/gt.2014.18.2477},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2477/}
}
TY  - JOUR
AU  - Jablonski, Michael
TI  - Homogeneous Ricci solitons are algebraic
JO  - Geometry & topology
PY  - 2014
SP  - 2477
EP  - 2486
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2477/
DO  - 10.2140/gt.2014.18.2477
ID  - GT_2014_18_4_a11
ER  - 
%0 Journal Article
%A Jablonski, Michael
%T Homogeneous Ricci solitons are algebraic
%J Geometry & topology
%D 2014
%P 2477-2486
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2477/
%R 10.2140/gt.2014.18.2477
%F GT_2014_18_4_a11
Jablonski, Michael. Homogeneous Ricci solitons are algebraic. Geometry & topology, Tome 18 (2014) no. 4, pp. 2477-2486. doi : 10.2140/gt.2014.18.2477. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2477/

[1] D V Alekseevskiĭ, B N Kimel’Fel’D, Structure of homogeneous Riemannian spaces with zero Ricci curvature, Funkcional. Anal. i Priložen. 9 (1975) 5

[2] A L Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. 10, Springer, Berlin (1987)

[3] B Chow, D Knopf, The Ricci flow: An introduction, Mathematical Surveys and Monographs 110, Amer. Math. Soc. (2004)

[4] C He, P Petersen, W Wylie, Warped product Einstein metrics on homogeneous spaces and homogeneous Ricci solitons,

[5] M Jablonski, Concerning the existence of Einstein and Ricci soliton metrics on solvable Lie groups, Geom. Topol. 15 (2011) 735

[6] M Jablonski, Moduli of Einstein and non-Einstein nilradicals, Geom. Dedicata 152 (2011) 63

[7] M Jablonski, Homogeneous Ricci solitons,

[8] M Jablonski, Strongly solvable spaces,

[9] G R Jensen, The scalar curvature of left-invariant Riemannian metrics, Indiana Univ. Math. J. 20 (1970/1971) 1125

[10] R Lafuente, On homogeneous warped product Einstein metrics,

[11] R Lafuente, J Lauret, On homogeneous Ricci solitons, Q. J. Math. 65 (2014) 399

[12] R Lafuente, J Lauret, Structure Of homogeneous Ricci solitons and the Alekseevskii conjecture,

[13] J Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann. 319 (2001) 715

[14] J Lauret, The Ricci flow for simply connected nilmanifolds, Comm. Anal. Geom. 19 (2011) 831

[15] J Lott, Dimensional reduction and the long-time behavior of Ricci flow, Comment. Math. Helv. 85 (2010) 485

[16] P Petersen, W Wylie, On gradient Ricci solitons with symmetry, Proc. Amer. Math. Soc. 137 (2009) 2085

Cité par Sources :