On exotic Lagrangian tori in ℂℙ2
Geometry & topology, Tome 18 (2014) no. 4, pp. 2419-2476.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct an exotic monotone Lagrangian torus in 2 using techniques motivated by mirror symmetry. We show that it bounds 10 families of Maslov index 2 holomorphic discs, and it follows that this exotic torus is not Hamiltonian isotopic to the known Clifford and Chekanov tori.

DOI : 10.2140/gt.2014.18.2419
Classification : 53D12, 53D37, 53D40
Keywords: exotic Lagrangian, Clifford, Chekanov, torus, tori

Vianna, Renato 1

1 Department of Mathematics, University of California at Berkeley, 1087 Evans Hall, Berkeley, CA 94720-3840, USA
@article{GT_2014_18_4_a10,
     author = {Vianna, Renato},
     title = {On exotic {Lagrangian} tori in {\ensuremath{\mathbb{C}}\ensuremath{\mathbb{P}}2}},
     journal = {Geometry & topology},
     pages = {2419--2476},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2014},
     doi = {10.2140/gt.2014.18.2419},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2419/}
}
TY  - JOUR
AU  - Vianna, Renato
TI  - On exotic Lagrangian tori in ℂℙ2
JO  - Geometry & topology
PY  - 2014
SP  - 2419
EP  - 2476
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2419/
DO  - 10.2140/gt.2014.18.2419
ID  - GT_2014_18_4_a10
ER  - 
%0 Journal Article
%A Vianna, Renato
%T On exotic Lagrangian tori in ℂℙ2
%J Geometry & topology
%D 2014
%P 2419-2476
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2419/
%R 10.2140/gt.2014.18.2419
%F GT_2014_18_4_a10
Vianna, Renato. On exotic Lagrangian tori in ℂℙ2. Geometry & topology, Tome 18 (2014) no. 4, pp. 2419-2476. doi : 10.2140/gt.2014.18.2419. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2419/

[1] D Auroux, Mirror symmetry and $T$–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT 1 (2007) 51

[2] D Auroux, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, from: "Geometry, analysis, and algebraic geometry: Forty years of the Journal of Differential Geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 13, International Press (2009) 1

[3] P Biran, O Cornea, A Lagrangian quantum homology, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 1

[4] P Biran, O Cornea, Lagrangian topology and enumerative geometry, Geom. Topol. 16 (2012) 963

[5] Y V Chekanov, Lagrangian tori in a symplectic vector space and global symplectomorphisms, Math. Z. 223 (1996) 547

[6] Y V Chekanov, F Schlenk, Notes on monotone Lagrangian twist tori, Electron. Res. Announc. Math. Sci. 17 (2010) 104

[7] C H Cho, Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not. 2004 (2004) 1803

[8] C H Cho, Y G Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006) 773

[9] Y Eliashberg, L Polterovich, The problem of Lagrangian knots in four-manifolds, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 313

[10] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory: Anomaly and obstruction, Part II, AMS/IP Studies in Advanced Mathematics 46, Amer. Math. Soc. (2009)

[11] S Galkin, A Usnich, Mutations of potentials, preprint (2010)

[12] M Gross, B Siebert, An invitation to toric degenerations, from: "Geometry of special holonomy and related topics" (editors N C Leung, S T Yau), Surv. Differ. Geom. 16, International Press (2011) 43

[13] M Kontsevich, Y Soibelman, Affine structures and non-Archimedean analytic spaces, from: "The unity of mathematics" (editors P Etingof, V Retakh, I M Singer), Progr. Math. 244, Birkhäuser (2006) 321

[14] D Kwon, Y G Oh, Structure of the image of (pseudo)holomorphic discs with totally real boundary condition, Comm. Anal. Geom. 8 (2000) 31

[15] L Lazzarini, Existence of a somewhere injective pseudoholomorphic disc, Geom. Funct. Anal. 10 (2000) 829

[16] N C Leung, M Symington, Almost toric symplectic four-manifolds, J. Symplectic Geom. 8 (2010) 143

[17] Y G Oh, Relative Floer and quantum cohomology and the symplectic topology of Lagrangian submanifolds, from: "Contact and symplectic geometry" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 201

[18] M Symington, Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153

[19] N A Tyurin, Exotic Chekanov tori in toric symplectic varieties, J. Physics 411 (2013)

Cité par Sources :