Lipschitz connectivity and filling invariants in solvable groups and buildings
Geometry & topology, Tome 18 (2014) no. 4, pp. 2375-2417.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Filling invariants of a group or space are quantitative versions of finiteness properties which measure the difficulty of filling a sphere in a space with a ball. Filling spheres is easy in nonpositively curved spaces, but it can be much harder in subsets of nonpositively curved spaces, such as certain solvable groups and lattices in semisimple groups. In this paper, we give some new methods for bounding filling invariants of such subspaces based on Lipschitz extension theorems. We apply our methods to find sharp bounds on higher-order Dehn functions of Sol2n+1, horospheres in euclidean buildings, Hilbert modular groups and certain S–arithmetic groups.

DOI : 10.2140/gt.2014.18.2375
Classification : 20F65, 20E42
Keywords: filling invariants, Lipschitz extensions, lattices in arithmetic groups

Young, Robert 1

1 Department of Mathematics, University of Toronto, 40 St. George St., Room 6290, Toronto, Ontario M5S 2E4, Canada
@article{GT_2014_18_4_a9,
     author = {Young, Robert},
     title = {Lipschitz connectivity and filling invariants in solvable groups and buildings},
     journal = {Geometry & topology},
     pages = {2375--2417},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2014},
     doi = {10.2140/gt.2014.18.2375},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2375/}
}
TY  - JOUR
AU  - Young, Robert
TI  - Lipschitz connectivity and filling invariants in solvable groups and buildings
JO  - Geometry & topology
PY  - 2014
SP  - 2375
EP  - 2417
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2375/
DO  - 10.2140/gt.2014.18.2375
ID  - GT_2014_18_4_a9
ER  - 
%0 Journal Article
%A Young, Robert
%T Lipschitz connectivity and filling invariants in solvable groups and buildings
%J Geometry & topology
%D 2014
%P 2375-2417
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2375/
%R 10.2140/gt.2014.18.2375
%F GT_2014_18_4_a9
Young, Robert. Lipschitz connectivity and filling invariants in solvable groups and buildings. Geometry & topology, Tome 18 (2014) no. 4, pp. 2375-2417. doi : 10.2140/gt.2014.18.2375. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2375/

[1] P Abramenko, Twin buildings and applications to $S$–arithmetic groups, Lecture Notes in Math. 1641, Springer (1996)

[2] P Abramenko, K S Brown, Buildings, Graduate Texts in Math. 248, Springer (2008)

[3] A Abrams, N Brady, P Dani, M Duchin, R Young, Pushing fillings in right-angled Artin groups, J. Lond. Math. Soc. 87 (2013) 663

[4] L Ambrosio, B Kirchheim, Currents in metric spaces, Acta Math. 185 (2000) 1

[5] M Bestvina, A Eskin, K Wortman, Filling boundaries of coarse manifolds in semisimple and solvable arithmetic groups, J. Eur. Math. Soc. (JEMS) 15 (2013) 2165

[6] K U Bux, K Wortman, Finiteness properties of arithmetic groups over function fields, Invent. Math. 167 (2007) 355

[7] K U Bux, K Wortman, Connectivity properties of horospheres in Euclidean buildings and applications to finiteness properties of discrete groups, Invent. Math. 185 (2011) 395

[8] Y De Cornulier, R Tessera, Metabelian groups with quadratic Dehn function and Baumslag–Solitar groups, Confluentes Math. 2 (2010) 431

[9] C Druţu, Filling in solvable groups and in lattices in semisimple groups, Topology 43 (2004) 983

[10] D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett Publishers (1992)

[11] S M Gersten, Isoperimetric and isodiametric functions of finite presentations, from: "Geometric group theory, Vol. 1" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 79

[12] C Groft, Generalized Dehn functions, II,

[13] M Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1

[14] M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1

[15] M Gromov, Carnot–Carathéodory spaces seen from within, from: "Sub-Riemannian geometry" (editors A Bellaïche, J J Risler), Progr. Math. 144, Birkhäuser (1996) 79

[16] B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 639

[17] U Lang, T Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 2005 (2005) 3625

[18] E Leuzinger, C Pittet, Isoperimetric inequalities for lattices in semisimple Lie groups of rank $2$, Geom. Funct. Anal. 6 (1996) 489

[19] A Lubotzky, S Mozes, M S Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. 91 (2000) 5

[20] C Pittet, Hilbert modular groups and isoperimetric inequalities, from: "Combinatorial and geometric group theory" (editors A J Duncan, N D Gilbert, J Howie), London Math. Soc. Lecture Note Ser. 204, Cambridge Univ. Press (1995) 259

[21] B Schulz, Spherical subcomplexes of spherical buildings, Geom. Topol. 17 (2013) 531

[22] S Wenger, A short proof of Gromov's filling inequality, Proc. Amer. Math. Soc. 136 (2008) 2937

[23] B White, Mappings that minimize area in their homotopy classes, J. Differential Geom. 20 (1984) 433

[24] R Young, The Dehn function of $\mathrm{SL}(n;\mathbb{Z})$, Ann. of Math. (2) 177 (2013) 969

Cité par Sources :