Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define refined invariants which “count” nodal curves in sufficiently ample linear systems on surfaces, conjecture that their generating function is multiplicative, and conjecture explicit formulas in the case of and abelian surfaces. We also give a refinement of the Caporaso–Harris recursion, and conjecture that it produces the same invariants in the sufficiently ample setting. The refined recursion specializes at to the Itenberg–Kharlamov–Shustin recursion for Welschinger invariants. We find similar interactions between refined invariants of individual curves and real invariants of their versal families.
Göttsche, Lothar 1 ; Shende, Vivek 2
@article{GT_2014_18_4_a7, author = {G\"ottsche, Lothar and Shende, Vivek}, title = {Refined curve counting on complex surfaces}, journal = {Geometry & topology}, pages = {2245--2307}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2014}, doi = {10.2140/gt.2014.18.2245}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2245/} }
TY - JOUR AU - Göttsche, Lothar AU - Shende, Vivek TI - Refined curve counting on complex surfaces JO - Geometry & topology PY - 2014 SP - 2245 EP - 2307 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2245/ DO - 10.2140/gt.2014.18.2245 ID - GT_2014_18_4_a7 ER -
Göttsche, Lothar; Shende, Vivek. Refined curve counting on complex surfaces. Geometry & topology, Tome 18 (2014) no. 4, pp. 2245-2307. doi : 10.2140/gt.2014.18.2245. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2245/
[1] Irreducibility of the compactified Jacobian, from: "Real and complex singularities", Sijthoff and Noordhoff, Alphen aan den Rijn (1977) 1
, , ,[2] Compactifying the Picard scheme, Adv. in Math. 35 (1980) 50
, ,[3] Characteristic classes of discriminants and enumerative geometry, Comm. Algebra 26 (1998) 3165
,[4] Singularities of differentiable maps, Vol. $2$, Birkhäuser (2012)
, , ,[5] Counting rational curves on $K3$ surfaces, Duke Math. J. 97 (1999) 99
,[6] Motivic degree zero Donaldson–Thomas invariants, Invent. Math. 192 (2013) 111
, , ,[7] Euler characteristic of real nondegenerate tropical complete intersections,
, ,[8] Computing node polynomials for plane curves, Math. Res. Lett. 18 (2011) 621
,[9] Refined curve counting with tropical geometry, in preparation
, ,[10] The enumerative geometry of $K3$ surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371
, ,[11] On motivic vanishing cycles of critical loci,
, , ,[12] Counting plane curves of any genus, Invent. Math. 131 (1998) 345
, ,[13] Exts and vertex operators, Duke Math. J. 161 (2012) 1797
, ,[14] A simple proof that rational curves on $K3$ are nodal, Math. Ann. 324 (2002) 71
,[15] The refined BPS index from stable pair invariants, Comm. Math. Phys. 328 (2014) 903
, , ,[16] Topological properties of real algebraic varieties: Rokhlin's way, Uspekhi Mat. Nauk 55 (2000) 129
, ,[17] Ideals associated to deformations of singular plane curves, Trans. Amer. Math. Soc. 309 (1988) 433
, ,[18] Refined, motivic, and quantum, Lett. Math. Phys. 91 (2010) 1
, ,[19] Wall-crossing formulas, the Bott residue formula and the Donaldson invariants of rational surfaces, Quart. J. Math. Oxford Ser. 49 (1998) 307
, ,[20] On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001) 81
, , ,[21] Riemann–Roch theorems and elliptic genus for virtually smooth schemes, Geom. Topol. 14 (2010) 83
, ,[22] Euler number of the compactified Jacobian and multiplicity of rational curves, J. Algebraic Geom. 8 (1999) 115
, , ,[23] The Caporaso–Harris formula and plane relative Gromov–Witten invariants in tropical geometry, Math. Ann. 338 (2007) 845
, ,[24] Intersection theory on $\overline{M}_{1,4}$ and elliptic Gromov–Witten invariants, J. Amer. Math. Soc. 10 (1997) 973
,[25] $M\!$–theory and topological strings, I,
, ,[26] $M\!$–theory and topological strings, II,
, ,[27] A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys. 196 (1998) 523
,[28] The $\chi_{-y}$ genera of relative Hilbert schemes for linear systems on Abelian and $K3$ surfaces,
, ,[29] Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296 (1993) 235
, ,[30] Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986) 375
,[31] Topological methods in algebraic geometry, Springer (1995)
,[32] Birational symplectic manifolds and their deformations, J. Differential Geom. 45 (1997) 488
,[33] The refined topological vertex, J. High Energy Phys. (2009) 069, 58
, , ,[34] A Caporaso–Harris type formula for Welschinger invariants of real toric del Pezzo surfaces, Comment. Math. Helv. 84 (2009) 87
, , ,[35] On Block–Göttsche multiplicities for planar tropical curves, Int. Math. Res. Not. 2013 (2013) 5289
, ,[36] The elliptic curve in the $S$–duality theory and Eisenstein series for Kac–Moody groups,
,[37] $M\!$–theory, topological strings and spinning black holes, Adv. Theor. Math. Phys. 3 (1999) 1445
, , ,[38] String partition functions and infinite products, Adv. Theor. Math. Phys. 4 (2000) 397
, ,[39] Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988) 129
, ,[40] On the Göttsche threshold, from: "A celebration of algebraic geometry" (editors B Hassett, J McKernan, J Starr, R Vakil), Clay Math. Proc. 18, Amer. Math. Soc. (2013) 429
, ,[41] Stability structures, motivic Donaldson–Thomas invariants and cluster transformations,
, ,[42] Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231
, ,[43] A short proof of the Göttsche conjecture, Geom. Topol. 15 (2011) 397
, , ,[44] Reduced classes and curve counting on surfaces I: Theory,
, ,[45] Extended holomorphic anomaly in gauge theory, Lett. Math. Phys. 95 (2011) 67
, ,[46] Fibres de Springer et jacobiennes compactifiées, from: "Algebraic geometry and number theory", Progr. Math., Birkhäuser (2006) 515
,[47] Algebraic cobordism of bundles on varieties, J. Eur. Math. Soc. (JEMS) 14 (2012) 1081
, ,[48] Symmetric products of an algebraic curve, Topology 1 (1962) 319
,[49] Chern classes for singular algebraic varieties, Ann. of Math. 100 (1974) 423
,[50] Stable pairs and the HOMFLY polynomial,
,[51] Curves on $K3$ surfaces and modular forms, J. Topol. 3 (2010) 937
, , ,[52] Macdonald formula for curves with planar singularities,
, ,[53] Higher discriminants and the topology of algebraic maps,
, ,[54] A support theorem for Hilbert schemes of planar curves, J. Eur. Math. Soc. (JEMS) 15 (2013) 2353
, ,[55] Enumerative tropical algebraic geometry in $\mathbb R^2$, J. Amer. Math. Soc. 18 (2005) 313
,[56] Symplectic structure of the moduli space of sheaves on an abelian or $K3$ surface, Invent. Math. 77 (1984) 101
,[57] Lectures on instanton counting, from: "Algebraic structures and moduli spaces" (editors J Hurtubise, E Markman), CRM Proc. Lecture Notes 38, Amer. Math. Soc. (2004) 31
, ,[58] The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link,
, , ,[59] The Hilbert scheme of a plane curve singularity and the HOMFLY polynomial of its link, Duke Math. J. 161 (2012) 1277
, ,[60] Notes on Göttsche's conjecture about the $\chi_y$ genus
,[61] Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009) 407
, ,[62] Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010) 267
, ,[63] Topology of the compactified Jacobians of singular curves, Math. Z. 255 (2007) 195
,[64] Introduction to mixed Hodge modules, from: "Actes du colloque de théorie de Hodge", Astérisque 179–180, Soc. Math. France (1989) 10, 145
,[65] Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles, Duke Math. J. 150 (2009) 211
,[66] Analytische Zahlentheorie in Körpern der Charakteristik $p$, Math. Z. 33 (1931) 1
,[67] Hilbert schemes of points on a locally planar curve and the Severi strata of its versal deformation, Compos. Math. 148 (2012) 531
,[68] Some problems on Lagrangian singularities, from: "Singularities and computer algebra" (editors C Lossen, G Pfister), London Math. Soc. Lecture Note Ser. 324, Cambridge Univ. Press (2006) 333
,[69] Résolution simultanée, I, II, from: "Seminaire sur les singularites des surfaces", Lect. Notes Math. 777 (1980) 71
,[70] A proof of the Göttsche–Yau–Zaslow formula, J. Differential Geom. 90 (2012) 439
,[71] Counting curves on rational surfaces, Manuscripta Math. 102 (2000) 53
,[72] Invariants of real symplectic $4$–manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005) 195
,[73] BPS states, string duality, and nodal curves on $K3$, Nuclear Phys. B 471 (1996) 503
, ,Cité par Sources :