Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For dimensions , we show that the space of metrics of positive scalar curvature on the sphere is homotopy equivalent to a subspace of itself which takes the form of an –space with a homotopy commutative, homotopy associative product operation. This product operation is based on the connected sum construction. We then exhibit an action on this subspace of the operad obtained by applying the bar construction to the little –disks operad. Using results of Boardman, Vogt and May we show that this implies, when , that the path component of containing the round metric is weakly homotopy equivalent to an –fold loop space. Furthermore, we show that when or , the space is weakly homotopy equivalent to an –fold loop space provided a conjecture of Botvinnik concerning positive scalar curvature concordance is resolved in the affirmative.
Walsh, Mark 1
@article{GT_2014_18_4_a6, author = {Walsh, Mark}, title = {H{\textendash}spaces, loop spaces and the space of positive scalar curvature metrics on the sphere}, journal = {Geometry & topology}, pages = {2189--2243}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2014}, doi = {10.2140/gt.2014.18.2189}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2189/} }
TY - JOUR AU - Walsh, Mark TI - H–spaces, loop spaces and the space of positive scalar curvature metrics on the sphere JO - Geometry & topology PY - 2014 SP - 2189 EP - 2243 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2189/ DO - 10.2140/gt.2014.18.2189 ID - GT_2014_18_4_a6 ER -
Walsh, Mark. H–spaces, loop spaces and the space of positive scalar curvature metrics on the sphere. Geometry & topology, Tome 18 (2014) no. 4, pp. 2189-2243. doi : 10.2140/gt.2014.18.2189. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2189/
[1] Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics 347, Springer (1973)
, ,[2] Concordance and isotopy of metrics with positive scalar curvature, Geom. Funct. Anal. 23 (2013) 1099
,[3] Construction of manifolds of positive scalar curvature, Trans. Amer. Math. Soc. 307 (1988) 63
,[4] The Gromoll filtration, $KO$–characteristic classes and metrics of positive scalar curvature, Geom. Topol. 17 (2013) 1773
, ,[5] Riemannian metrics of positive scalar curvature on compact manifolds with boundary, Ann. Global Anal. Geom. 5 (1987) 179
,[6] The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980) 423
, ,[7] The space of metrics of positive scalar curvature, (2014)
, , ,[8] Algebraic topology, Cambridge Univ. Press (2002)
,[9] Harmonic spinors, Advances in Math. 14 (1974) 1
,[10] Operads in algebra, topology and physics, Mathematical Surveys and Monographs 96, Amer. Math. Soc. (2002)
, , ,[11] Deforming three-manifolds with positive scalar curvature, Ann. of Math. 176 (2012) 815
,[12] The geometry of iterated loop spaces, Lecture Notes in Mathematics 271, Springer (1972)
,[13] Homotopy theory of infinite dimensional manifolds, Topology 5 (1966) 1
,[14] Riemannian geometry, Graduate Texts in Mathematics 171, Springer (2006)
,[15] Metrics of positive scalar curvature and connections with surgery, from: "Surveys on surgery theory, Vol. 2" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 353
, ,[16] Positive scalar curvature, diffeomorphisms and the Seiberg–Witten invariants, Geom. Topol. 5 (2001) 895
,[17] On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979) 159
, ,[18] Cofibrant operads and universal $E_\infty$ operads, Topology Appl. 133 (2003) 69
,[19] Metrics of positive scalar curvature and generalised Morse functions, I, Mem. Amer. Math. Soc. 983, American Mathematical Society (2011)
,[20] Cobordism invariance of the homotopy type of the space of positive scalar curvature metrics, Proc. Amer. Math. Soc. 141 (2013) 2475
,[21] Metrics of positive scalar curvature and generalised Morse functions, II, Trans. Amer. Math. Soc. 366 (2014) 1
,Cité par Sources :