H–spaces, loop spaces and the space of positive scalar curvature metrics on the sphere
Geometry & topology, Tome 18 (2014) no. 4, pp. 2189-2243.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For dimensions n 3, we show that the space Riem+(Sn) of metrics of positive scalar curvature on the sphere Sn is homotopy equivalent to a subspace of itself which takes the form of an H–space with a homotopy commutative, homotopy associative product operation. This product operation is based on the connected sum construction. We then exhibit an action on this subspace of the operad obtained by applying the bar construction to the little n–disks operad. Using results of Boardman, Vogt and May we show that this implies, when n 3, that the path component of Riem+(Sn) containing the round metric is weakly homotopy equivalent to an n–fold loop space. Furthermore, we show that when n = 3 or n 5, the space Riem+(Sn) is weakly homotopy equivalent to an n–fold loop space provided a conjecture of Botvinnik concerning positive scalar curvature concordance is resolved in the affirmative.

DOI : 10.2140/gt.2014.18.2189
Classification : 53C99, 55S99
Keywords: positive scalar curvature, iterated loop space, $H$–space, connected sum, operad

Walsh, Mark 1

1 Department of Mathematics, Statistics and Physics, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA
@article{GT_2014_18_4_a6,
     author = {Walsh, Mark},
     title = {H{\textendash}spaces, loop spaces and the space of positive scalar curvature metrics on the sphere},
     journal = {Geometry & topology},
     pages = {2189--2243},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2014},
     doi = {10.2140/gt.2014.18.2189},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2189/}
}
TY  - JOUR
AU  - Walsh, Mark
TI  - H–spaces, loop spaces and the space of positive scalar curvature metrics on the sphere
JO  - Geometry & topology
PY  - 2014
SP  - 2189
EP  - 2243
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2189/
DO  - 10.2140/gt.2014.18.2189
ID  - GT_2014_18_4_a6
ER  - 
%0 Journal Article
%A Walsh, Mark
%T H–spaces, loop spaces and the space of positive scalar curvature metrics on the sphere
%J Geometry & topology
%D 2014
%P 2189-2243
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2189/
%R 10.2140/gt.2014.18.2189
%F GT_2014_18_4_a6
Walsh, Mark. H–spaces, loop spaces and the space of positive scalar curvature metrics on the sphere. Geometry & topology, Tome 18 (2014) no. 4, pp. 2189-2243. doi : 10.2140/gt.2014.18.2189. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2189/

[1] J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics 347, Springer (1973)

[2] B Botvinnik, Concordance and isotopy of metrics with positive scalar curvature, Geom. Funct. Anal. 23 (2013) 1099

[3] R Carr, Construction of manifolds of positive scalar curvature, Trans. Amer. Math. Soc. 307 (1988) 63

[4] D Crowley, T Schick, The Gromoll filtration, $KO$–characteristic classes and metrics of positive scalar curvature, Geom. Topol. 17 (2013) 1773

[5] P Gajer, Riemannian metrics of positive scalar curvature on compact manifolds with boundary, Ann. Global Anal. Geom. 5 (1987) 179

[6] M Gromov, H B Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980) 423

[7] B Hanke, T Schick, W Steimle, The space of metrics of positive scalar curvature, (2014)

[8] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[9] N Hitchin, Harmonic spinors, Advances in Math. 14 (1974) 1

[10] M Markl, S Shnider, J Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs 96, Amer. Math. Soc. (2002)

[11] F C Marques, Deforming three-manifolds with positive scalar curvature, Ann. of Math. 176 (2012) 815

[12] J P May, The geometry of iterated loop spaces, Lecture Notes in Mathematics 271, Springer (1972)

[13] R S Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966) 1

[14] P Petersen, Riemannian geometry, Graduate Texts in Mathematics 171, Springer (2006)

[15] J Rosenberg, S Stolz, Metrics of positive scalar curvature and connections with surgery, from: "Surveys on surgery theory, Vol. 2" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 353

[16] D Ruberman, Positive scalar curvature, diffeomorphisms and the Seiberg–Witten invariants, Geom. Topol. 5 (2001) 895

[17] R Schoen, S T Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979) 159

[18] R M Vogt, Cofibrant operads and universal $E_\infty$ operads, Topology Appl. 133 (2003) 69

[19] M Walsh, Metrics of positive scalar curvature and generalised Morse functions, I, Mem. Amer. Math. Soc. 983, American Mathematical Society (2011)

[20] M Walsh, Cobordism invariance of the homotopy type of the space of positive scalar curvature metrics, Proc. Amer. Math. Soc. 141 (2013) 2475

[21] M Walsh, Metrics of positive scalar curvature and generalised Morse functions, II, Trans. Amer. Math. Soc. 366 (2014) 1

Cité par Sources :