The pillowcase and perturbations of traceless representations of knot groups
Geometry & topology, Tome 18 (2014) no. 1, pp. 211-287.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce explicit holonomy perturbations of the Chern–Simons functional on a 3–ball containing a pair of unknotted arcs. These perturbations give us a concrete local method for making the moduli spaces of flat singular SO(3) connections relevant to Kronheimer and Mrowka’s singular instanton knot homology nondegenerate. The mechanism for this study is a (Lagrangian) intersection diagram which arises, through restriction of representations, from a tangle decomposition of a knot. When one of the tangles is trivial, our perturbations allow us to study isolated intersections of two Lagrangians to produce minimal generating sets for singular instanton knot homology. The (symplectic) manifold where this intersection occurs corresponds to the traceless character variety of the four-punctured 2–sphere, which we identify with the familiar pillowcase. We investigate the image in this pillowcase of the traceless representations of tangles obtained by removing a trivial tangle from 2–bridge knots and torus knots. Using this, we compute the singular instanton homology of a variety of torus knots. In many cases, our computations allow us to understand nontrivial differentials in the spectral sequence from Khovanov homology to singular instanton homology.

DOI : 10.2140/gt.2014.18.211
Classification : 57M27, 57R58, 57M25, 81T13
Keywords: pillowcase, holonomy perturbation, instanton, Floer homology, character variety, two bridge knot, torus knot

Hedden, Matthew 1 ; Herald, Chris M 2 ; Kirk, Paul 3

1 Department of Mathematics, Michigan State University, A338 WH, East Lansing, MI 48824, USA
2 Department of Mathematics, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA
3 Department of Mathematics, Indiana University, Rawles Hall, 831 East 3 Street, Bloomington, IN 47405, USA
@article{GT_2014_18_1_a6,
     author = {Hedden, Matthew and Herald, Chris M and Kirk, Paul},
     title = {The pillowcase and perturbations of traceless representations of knot groups},
     journal = {Geometry & topology},
     pages = {211--287},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2014},
     doi = {10.2140/gt.2014.18.211},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.211/}
}
TY  - JOUR
AU  - Hedden, Matthew
AU  - Herald, Chris M
AU  - Kirk, Paul
TI  - The pillowcase and perturbations of traceless representations of knot groups
JO  - Geometry & topology
PY  - 2014
SP  - 211
EP  - 287
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.211/
DO  - 10.2140/gt.2014.18.211
ID  - GT_2014_18_1_a6
ER  - 
%0 Journal Article
%A Hedden, Matthew
%A Herald, Chris M
%A Kirk, Paul
%T The pillowcase and perturbations of traceless representations of knot groups
%J Geometry & topology
%D 2014
%P 211-287
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.211/
%R 10.2140/gt.2014.18.211
%F GT_2014_18_1_a6
Hedden, Matthew; Herald, Chris M; Kirk, Paul. The pillowcase and perturbations of traceless representations of knot groups. Geometry & topology, Tome 18 (2014) no. 1, pp. 211-287. doi : 10.2140/gt.2014.18.211. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.211/

[1] S Akbulut, J D Mccarthy, Casson's invariant for oriented homology $3$–spheres, Mathematical Notes 36, Princeton Univ. Press (1990)

[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43

[3] D Bar-Natan, The Mathematica package KnotTheory

[4] H U Boden, C M Herald, P A Kirk, E P Klassen, Gauge theoretic invariants of Dehn surgeries on knots, Geom. Topol. 5 (2001) 143

[5] G Burde, $\mathrm{SU}(2)$–representation spaces for two-bridge knot groups, Math. Ann. 288 (1990) 103

[6] G Burde, H Zieschang, Knots, de Gruyter Studies in Mathematics 5, de Gruyter (1985)

[7] D Cooper, M Culler, H Gillet, D D Long, P B Shalen, Plane curves associated to character varieties of $3$–manifolds, Invent. Math. 118 (1994) 47

[8] M Daniel, P A Kirk, A general splitting formula for the spectral flow, Michigan Math. J. 46 (1999) 589

[9] A Floer, Instanton homology, surgery, and knots, from: "Geometry of low-dimensional manifolds, $1$" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 150, Cambridge Univ. Press (1990) 97

[10] Y Fukumoto, P A Kirk, J Pinzón-Caicedo, Traceless $\mathrm{SU}(2)$ representations of $2$–stranded tangles

[11] B Gerard, Singular connections on $3$–manifolds and manifolds with cylindrical ends

[12] C M Herald, Legendrian cobordism and Chern–Simons theory on $3$–manifolds with boundary, Comm. Anal. Geom. 2 (1994) 337

[13] C M Herald, Flat connections, the Alexander invariant, and Casson's invariant, Comm. Anal. Geom. 5 (1997) 93

[14] M Heusener, J Kroll, Deforming abelian $\mathrm{SU}(2)$–representations of knot groups, Comment. Math. Helv. 73 (1998) 480

[15] M Jacobsson, R L Rubinsztein, Symplectic topology of $\mathrm{SU}(2)$–representation varieties and link homology, I: Symplectic braid action and the first Chern class

[16] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359

[17] M Khovanov, Patterns in knot cohomology, I, Experiment. Math. 12 (2003) 365

[18] P A Kirk, E P Klassen, Chern–Simons invariants of $3$–manifolds and representation spaces of knot groups, Math. Ann. 287 (1990) 343

[19] P A Kirk, C Livingston, Concordance and mutation, Geom. Topol. 5 (2001) 831

[20] E P Klassen, Representations of knot groups in $\mathrm{SU}(2)$, Trans. Amer. Math. Soc. 326 (1991) 795

[21] P B Kronheimer, T S Mrowka, Filtrations on instanton homology

[22] P B Kronheimer, T S Mrowka, Dehn surgery, the fundamental group and $\mathrm{SU}(2)$, Math. Res. Lett. 11 (2004) 741

[23] P B Kronheimer, T S Mrowka, Instanton Floer homology and the Alexander polynomial, Algebr. Geom. Topol. 10 (2010) 1715

[24] P B Kronheimer, T S Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301

[25] P B Kronheimer, T S Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. (2011) 97

[26] P B Kronheimer, T S Mrowka, Knot homology groups from instantons, J. Topol. 4 (2011) 835

[27] E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554

[28] S Lewallen, Khovanov homology of alternating links and $\mathrm{SU}(2)$ representations of the link group

[29] Y Lim, Instanton homology and the Alexander polynomial, Proc. Amer. Math. Soc. 138 (2010) 3759

[30] X S Lin, A knot invariant via representation spaces, J. Differential Geom. 35 (1992) 337

[31] C Manolescu, P Ozsváth, On the Khovanov and knot Floer homologies of quasi-alternating links, from: "Proceedings of Gökova Geometry–Topology Conference 2007", GGT (2008) 60

[32] L I Nicolaescu, The Maslov index, the spectral flow, and decompositions of manifolds, Duke Math. J. 80 (1995) 485

[33] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[34] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281

[35] T R Ramadas, I M Singer, J Weitsman, Some comments on Chern–Simons gauge theory, Comm. Math. Phys. 126 (1989) 409

[36] J A Rasmussen, Floer homology and knot complements, PhD Thesis, Harvard University (2003)

[37] R Riley, Nonabelian representations of $2$–bridge knot groups, Quart. J. Math. Oxford Ser. 35 (1984) 191

[38] P Turner, A spectral sequence for Khovanov homology with an application to $(3,q)$–torus links, Algebr. Geom. Topol. 8 (2008) 869

[39] K Wehrheim, C T Woodward, Functoriality for Lagrangian correspondences in Floer theory, Quantum Topol. 1 (2010) 129

[40] A Weil, Remarks on the cohomology of groups, Ann. of Math. 80 (1964) 149

[41] R Zentner, Representation spaces of pretzel knots, Algebr. Geom. Topol. 11 (2011) 2941

Cité par Sources :