Realisation and dismantlability
Geometry & topology, Tome 18 (2014) no. 4, pp. 2079-2126.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that a finite group acting on an infinite graph with dismantling properties fixes a clique. We prove that in the flag complex spanned on such a graph the fixed point set is contractible. We study dismantling properties of the arc, disc and sphere graphs. We apply our theory to prove that any finite subgroup H of the mapping class group of a surface with punctures, the handlebody group, or Out(Fn) fixes a filling (respectively simple) clique in the appropriate graph. We deduce some realisation theorems, in particular the Nielsen realisation problem in the case of a nonempty set of punctures. We also prove that infinite H have either empty or contractible fixed point sets in the corresponding complexes. Furthermore, we show that their spines are classifying spaces for proper actions for mapping class groups and Out(Fn).

DOI : 10.2140/gt.2014.18.2079
Classification : 20F65
Keywords: arc complex, sphere complex, disc complex, Nielsen realisation, dismantlability

Hensel, Sebastian 1 ; Osajda, Damian 2 ; Przytycki, Piotr 3

1 Department of Mathematics, University of Chicago, 5734 S University Ave., Chicago, IL 60637, USA
2 Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland, and Universität Wien, Fakultät für Mathematik, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
3 McGill University, The Department of Mathematics and Statistics, Burnside Hall, Room 1005, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada, and Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland
@article{GT_2014_18_4_a4,
     author = {Hensel, Sebastian and Osajda, Damian and Przytycki, Piotr},
     title = {Realisation and dismantlability},
     journal = {Geometry & topology},
     pages = {2079--2126},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2014},
     doi = {10.2140/gt.2014.18.2079},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2079/}
}
TY  - JOUR
AU  - Hensel, Sebastian
AU  - Osajda, Damian
AU  - Przytycki, Piotr
TI  - Realisation and dismantlability
JO  - Geometry & topology
PY  - 2014
SP  - 2079
EP  - 2126
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2079/
DO  - 10.2140/gt.2014.18.2079
ID  - GT_2014_18_4_a4
ER  - 
%0 Journal Article
%A Hensel, Sebastian
%A Osajda, Damian
%A Przytycki, Piotr
%T Realisation and dismantlability
%J Geometry & topology
%D 2014
%P 2079-2126
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2079/
%R 10.2140/gt.2014.18.2079
%F GT_2014_18_4_a4
Hensel, Sebastian; Osajda, Damian; Przytycki, Piotr. Realisation and dismantlability. Geometry & topology, Tome 18 (2014) no. 4, pp. 2079-2126. doi : 10.2140/gt.2014.18.2079. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2079/

[1] J A Barmak, E G Minian, Strong homotopy types, nerves and collapses, Discrete Comput. Geom. 47 (2012) 301

[2] B H Bowditch, D B A Epstein, Natural triangulations associated to a surface, Topology 27 (1988) 91

[3] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer, Berlin (1999)

[4] P Buser, Geometry and spectra of compact Riemann surfaces, Modern Birkhäuser Classics, Birkhäuser (2010)

[5] V Chepoi, D Osajda, Dismantlability of weakly systolic complexes and applications, to appear in Trans. Amer. Math. Soc. (2014)

[6] M Culler, Finite groups of outer automorphisms of a free group, from: "Contributions to group theory" (editors K I Appel, J G Ratcliffe, P E Schupp), Contemp. Math. 33, Amer. Math. Soc. (1984) 197

[7] B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press (2012)

[8] D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447

[9] U Hamenstädt, S Hensel, The geometry of the handlebody groups I: Distortion, J. Topol. Anal. 4 (2012) 71

[10] U Hamenstädt, S Hensel, Sphere systems, intersections and the geometry of $\mathrm{Out}(F_n)$, (2014)

[11] J L Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. 121 (1985) 215

[12] J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157

[13] A Hatcher, On triangulations of surfaces, Topology Appl. 40 (1991) 189

[14] A Hatcher, Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995) 39

[15] L Ji, S A Wolpert, A cofinite universal space for proper actions for mapping class groups, from: "In the tradition of Ahlfors–Bers, V" (editors M Bonk, J Gilman, H Masur, Y Minsky, M Wolf), Contemp. Math. 510, Amer. Math. Soc. (2010) 151

[16] R P Kent Iv, C J Leininger, S Schleimer, Trees and mapping class groups, J. Reine Angew. Math. 637 (2009) 1

[17] S P Kerckhoff, The Nielsen realization problem, Bull. Amer. Math. Soc. 2 (1980) 452

[18] S P Kerckhoff, The Nielsen realization problem, Ann. of Math. 117 (1983) 235

[19] D G Khramtsov, Finite groups of automorphisms of free groups, Mat. Zametki 38 (1985) 386, 476

[20] S Krstić, K Vogtmann, Equivariant outer space and automorphisms of free-by-finite groups, Comment. Math. Helv. 68 (1993) 216

[21] F Laudenbach, Topologie de la dimension trois: Homotopie et isotopie, Astérisque 12, Société Mathématique de France, Paris (1974)

[22] H Masur, Measured foliations and handlebodies, Ergodic Theory Dynam. Systems 6 (1986) 99

[23] D Mccullough, Virtually geometrically finite mapping class groups of $3$–manifolds, J. Differential Geom. 33 (1991) 1

[24] D Meintrup, T Schick, A model for the universal space for proper actions of a hyperbolic group, New York J. Math. 8 (2002) 1

[25] G Mislin, Classifying spaces for proper actions of mapping class groups, Münster J. Math. 3 (2010) 263

[26] J Nielsen, Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1943) 23

[27] R C Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299

[28] N Polat, Finite invariant simplices in infinite graphs, Period. Math. Hungar. 27 (1993) 125

[29] P Przytycki, J Schultens, Contractibility of the Kakimizu complex and symmetric Seifert surfaces, Trans. Amer. Math. Soc. 364 (2012) 1489

[30] S Schleimer, Notes on the complex of curves, (2005)

[31] P Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988) 1

[32] T White, Fixed points of finite groups of free group automorphisms, Proc. Amer. Math. Soc. 118 (1993) 681

[33] S A Wolpert, Geodesic length functions and the Nielsen problem, J. Differential Geom. 25 (1987) 275

[34] H Zieschang, Finite groups of mapping classes of surfaces, Lecture Notes in Mathematics 875, Springer, Berlin (1981)

[35] B Zimmermann, Über Abbildungsklassen von Henkelkörpern, Arch. Math. $($Basel$)$ 33 (1979/80) 379

[36] B Zimmermann, Über Homöomorphismen $n$–dimensionaler Henkelkörper und endliche Erweiterungen von Schottky-Gruppen, Comment. Math. Helv. 56 (1981) 474

Cité par Sources :