Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This paper shows that, away from , the kernel of the Witten genus is precisely the ideal consisting of (bordism classes of) Cayley plane bundles with connected structure group, but only after restricting the Witten genus to string bordism. It does so by showing that the divisibility properties of Cayley plane bundle characteristic numbers arising in Borel–Hirzebruch Lie group-theoretic calculations correspond precisely to the divisibility properties arising in the Hovey–Ravenel–Wilson Hopf ring-theoretic calculation of string bordism at primes greater than .
McTague, Carl 1
@article{GT_2014_18_4_a3, author = {McTague, Carl}, title = {The {Cayley} plane and string bordism}, journal = {Geometry & topology}, pages = {2045--2078}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2014}, doi = {10.2140/gt.2014.18.2045}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2045/} }
McTague, Carl. The Cayley plane and string bordism. Geometry & topology, Tome 18 (2014) no. 4, pp. 2045-2078. doi : 10.2140/gt.2014.18.2045. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2045/
[1] The structure of the Spin cobordism ring, Ann. of Math. 86 (1967) 271
, , ,[2] Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949) 200
, ,[3] Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958) 458
, ,[4] Characteristic classes and homogeneous spaces, II, Amer. J. Math. 81 (1959) 315
, ,[5] Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles 1337, Hermann, Paris (1968)
,[6] A spectrum whose $Z_{p}$ cohomology is the algebra of reduced $p^\mathit{th}$ powers, Topology 5 (1966) 149
, ,[7] The Witten genus and $\mathrm{S}^3$–actions on manifolds, Preprint No. 6 (1994)
,[8] Rigidity theorems for $\mathrm{Spin}^{\mathrm{c}}$–manifolds and applications, PhD thesis, Universität Mainz (1996)
,[9] Some geometric properties of the Witten genus, from: "Alpine perspectives on algebraic topology" (editors C Ausoni, K Hess, J Scherer), Contemp. Math. 504, Amer. Math. Soc. (2009) 99
,[10] Erzeugende der Thomschen Algebra $\mathfrak{N}$, Math. Zeit. 65 (1956) 25
,[11] Bordismus und $\mathbf{C}\mathrm{P}^2$–Bündel, diploma thesis, Universität München (2008)
,[12] On $\langle 8\rangle$–cobordism, Illinois J. Math. 15 (1971) 533
,[13] Arithmetic properties of binomial coefficients, I: Binomial coefficients modulo prime powers, from: "Organic mathematics" (editors J Borwein, P Borwein, L Jörgenson, R Corless), CMS Conf. Proc. 20, Amer. Math. Soc. (1997) 253
,[14] An introduction to the theory of numbers, Clarendon Press (1979)
, ,[15] The homotopy of $M \mathrm String$ and $M \mathrm U\langle 6\rangle$ at large primes, Algebr. Geom. Topol. 8 (2008) 2401
,[16] The $7$–connected cobordism ring at $p=3$, Trans. Amer. Math. Soc. 347 (1995) 3473
, ,[17] Projective dimension and Brown–Peterson homology, Topology 12 (1973) 327
, ,[18] $\mathbf{H}\mathrm{P}^2$–bundles and elliptic homology, Acta Math. 171 (1993) 231
, ,[19] On elliptic genera and Jacobi forms, (1992)
,[20] $\mathrm{tmf}$ is not a ring spectrum quotient of String bordism,
,[21] On the Stiefel–Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965) 223
,[22] Characteristic classes, Annals of Mathematics Studies 76, Princeton Univ. Press (1974)
, ,[23] Note on the congruence $2^{4n}\equiv(-)^n(2n)!/(n!)^2$, where $2n+1$ is a prime, Ann. of Math. 9 (1894/95) 168
,[24] Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic Press (1986)
,[25] The Hopf ring for complex cobordism, Bull. Amer. Math. Soc. 80 (1974) 1185
, ,[26] Splitting certain $M \mathrm{Spin}$–module spectra, Topology 33 (1994) 159
,[27] A conjecture concerning positive Ricci curvature and the Witten genus, Math. Ann. 304 (1996) 785
,[28] Notes on cobordism theory, Mathematical notes, Princeton Univ. Press (1968)
,[29] On fibering of cobordism classes, Trans. Amer. Math. Soc. 178 (1973) 431
,[30] Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17
,[31] Determination of the cobordism ring, Ann. of Math. 72 (1960) 292
,[32] The $\Omega $–spectrum for Brown–Peterson cohomology, II, Amer. J. Math. 97 (1975) 101
,Cité par Sources :