The Cayley plane and string bordism
Geometry & topology, Tome 18 (2014) no. 4, pp. 2045-2078.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This paper shows that, away from 6, the kernel of the Witten genus is precisely the ideal consisting of (bordism classes of) Cayley plane bundles with connected structure group, but only after restricting the Witten genus to string bordism. It does so by showing that the divisibility properties of Cayley plane bundle characteristic numbers arising in Borel–Hirzebruch Lie group-theoretic calculations correspond precisely to the divisibility properties arising in the Hovey–Ravenel–Wilson BP Hopf ring-theoretic calculation of string bordism at primes greater than 3.

DOI : 10.2140/gt.2014.18.2045
Classification : 57R90, 58J26
Keywords: Cayley plane, Witten genus, string bordism

McTague, Carl 1

1 Mathematics Department, Johns Hopkins University, Baltimore, MD 21218, USA
@article{GT_2014_18_4_a3,
     author = {McTague, Carl},
     title = {The {Cayley} plane and string bordism},
     journal = {Geometry & topology},
     pages = {2045--2078},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2014},
     doi = {10.2140/gt.2014.18.2045},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2045/}
}
TY  - JOUR
AU  - McTague, Carl
TI  - The Cayley plane and string bordism
JO  - Geometry & topology
PY  - 2014
SP  - 2045
EP  - 2078
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2045/
DO  - 10.2140/gt.2014.18.2045
ID  - GT_2014_18_4_a3
ER  - 
%0 Journal Article
%A McTague, Carl
%T The Cayley plane and string bordism
%J Geometry & topology
%D 2014
%P 2045-2078
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2045/
%R 10.2140/gt.2014.18.2045
%F GT_2014_18_4_a3
McTague, Carl. The Cayley plane and string bordism. Geometry & topology, Tome 18 (2014) no. 4, pp. 2045-2078. doi : 10.2140/gt.2014.18.2045. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.2045/

[1] D W Anderson, E H Brown Jr., F P Peterson, The structure of the Spin cobordism ring, Ann. of Math. 86 (1967) 271

[2] A Borel, J De Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949) 200

[3] A Borel, F Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958) 458

[4] A Borel, F Hirzebruch, Characteristic classes and homogeneous spaces, II, Amer. J. Math. 81 (1959) 315

[5] N Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles 1337, Hermann, Paris (1968)

[6] E H Brown Jr., F P Peterson, A spectrum whose $Z_{p}$ cohomology is the algebra of reduced $p^\mathit{th}$ powers, Topology 5 (1966) 149

[7] A Dessai, The Witten genus and $\mathrm{S}^3$–actions on manifolds, Preprint No. 6 (1994)

[8] A Dessai, Rigidity theorems for $\mathrm{Spin}^{\mathrm{c}}$–manifolds and applications, PhD thesis, Universität Mainz (1996)

[9] A Dessai, Some geometric properties of the Witten genus, from: "Alpine perspectives on algebraic topology" (editors C Ausoni, K Hess, J Scherer), Contemp. Math. 504, Amer. Math. Soc. (2009) 99

[10] A Dold, Erzeugende der Thomschen Algebra $\mathfrak{N}$, Math. Zeit. 65 (1956) 25

[11] S Führing, Bordismus und $\mathbf{C}\mathrm{P}^2$–Bündel, diploma thesis, Universität München (2008)

[12] V Giambalvo, On $\langle 8\rangle$–cobordism, Illinois J. Math. 15 (1971) 533

[13] A Granville, Arithmetic properties of binomial coefficients, I: Binomial coefficients modulo prime powers, from: "Organic mathematics" (editors J Borwein, P Borwein, L Jörgenson, R Corless), CMS Conf. Proc. 20, Amer. Math. Soc. (1997) 253

[14] G H Hardy, E M Wright, An introduction to the theory of numbers, Clarendon Press (1979)

[15] M A Hovey, The homotopy of $M \mathrm String$ and $M \mathrm U\langle 6\rangle$ at large primes, Algebr. Geom. Topol. 8 (2008) 2401

[16] M A Hovey, D C Ravenel, The $7$–connected cobordism ring at $p=3$, Trans. Amer. Math. Soc. 347 (1995) 3473

[17] D C Johnson, W S Wilson, Projective dimension and Brown–Peterson homology, Topology 12 (1973) 327

[18] M Kreck, S Stolz, $\mathbf{H}\mathrm{P}^2$–bundles and elliptic homology, Acta Math. 171 (1993) 231

[19] K Liu, On elliptic genera and Jacobi forms, (1992)

[20] C Mctague, $\mathrm{tmf}$ is not a ring spectrum quotient of String bordism,

[21] J W Milnor, On the Stiefel–Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965) 223

[22] J W Milnor, J D Stasheff, Characteristic classes, Annals of Mathematics Studies 76, Princeton Univ. Press (1974)

[23] F Morley, Note on the congruence $2^{4n}\equiv(-)^n(2n)!/(n!)^2$, where $2n+1$ is a prime, Ann. of Math. 9 (1894/95) 168

[24] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic Press (1986)

[25] D C Ravenel, W S Wilson, The Hopf ring for complex cobordism, Bull. Amer. Math. Soc. 80 (1974) 1185

[26] S Stolz, Splitting certain $M \mathrm{Spin}$–module spectra, Topology 33 (1994) 159

[27] S Stolz, A conjecture concerning positive Ricci curvature and the Witten genus, Math. Ann. 304 (1996) 785

[28] R E Stong, Notes on cobordism theory, Mathematical notes, Princeton Univ. Press (1968)

[29] R E Stong, On fibering of cobordism classes, Trans. Amer. Math. Soc. 178 (1973) 431

[30] R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17

[31] C T C Wall, Determination of the cobordism ring, Ann. of Math. 72 (1960) 292

[32] W S Wilson, The $\Omega $–spectrum for Brown–Peterson cohomology, II, Amer. J. Math. 97 (1975) 101

Cité par Sources :