Ropelength criticality
Geometry & topology, Tome 18 (2014) no. 4, pp. 2595-2665.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The ropelength problem asks for the minimum-length configuration of a knotted diameter-one tube embedded in Euclidean three-space. The core curve of such a tube is called a tight knot, and its length is a knot invariant measuring complexity. In terms of the core curve, the thickness constraint has two parts: an upper bound on curvature and a self-contact condition.

We give a set of necessary and sufficient conditions for criticality with respect to this constraint, based on a version of the Kuhn–Tucker theorem that we established in previous work. The key technical difficulty is to compute the derivative of thickness under a smooth perturbation. This is accomplished by writing thickness as the minimum of a C1–compact family of smooth functions in order to apply a theorem of Clarke. We give a number of applications, including a classification of the “supercoiled helices” formed by critical curves with no self-contacts (constrained by curvature alone) and an explicit but surprisingly complicated description of the “clasp” junctions formed when one rope is pulled tight over another.

DOI : 10.2140/gt.2014.18.1973
Classification : 57M25, 49J52, 53A04
Keywords: ropelength, ideal knot, tight knot, constrained minimization, Kuhn–Tucker theorem, simple clasp, Clarke gradient

Cantarella, Jason 1 ; Fu, Joseph H G 1 ; Kusner, Robert B 2 ; Sullivan, John M 3

1 Department of Mathematics, University of Georgia, Athens, GA 30602, USA
2 Department of Mathematics, University of Massachusetts, Lederle Graduate Research Tower, Box 34515, Amherst, MA 01003, USA
3 Institut für Mathematik, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany
@article{GT_2014_18_4_a2,
     author = {Cantarella, Jason and Fu, Joseph H G and Kusner, Robert B and Sullivan, John M},
     title = {Ropelength criticality},
     journal = {Geometry & topology},
     pages = {2595--2665},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2014},
     doi = {10.2140/gt.2014.18.1973},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1973/}
}
TY  - JOUR
AU  - Cantarella, Jason
AU  - Fu, Joseph H G
AU  - Kusner, Robert B
AU  - Sullivan, John M
TI  - Ropelength criticality
JO  - Geometry & topology
PY  - 2014
SP  - 2595
EP  - 2665
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1973/
DO  - 10.2140/gt.2014.18.1973
ID  - GT_2014_18_4_a2
ER  - 
%0 Journal Article
%A Cantarella, Jason
%A Fu, Joseph H G
%A Kusner, Robert B
%A Sullivan, John M
%T Ropelength criticality
%J Geometry & topology
%D 2014
%P 2595-2665
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1973/
%R 10.2140/gt.2014.18.1973
%F GT_2014_18_4_a2
Cantarella, Jason; Fu, Joseph H G; Kusner, Robert B; Sullivan, John M. Ropelength criticality. Geometry & topology, Tome 18 (2014) no. 4, pp. 2595-2665. doi : 10.2140/gt.2014.18.1973. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1973/

[1] T Ashton, J Cantarella, A fast octree-based algorithm for computing ropelength, from: "Physical and numerical models in knot theory" (editors J A Calvo, K C Millett, E J Rawdon, A Stasiak), Ser. Knots Everything 36, World Sci. Publ., Singapore (2005) 323

[2] N Bourbaki, Éléments de mathématique: Fonctions d'une variable réelle, Théorie élémentaire, Hermann, Paris (1976)

[3] J Cantarella, J Ellis, J H G Fu, M Mastin, Symmetric criticality for tight knots,

[4] J Cantarella, J H G Fu, R B Kusner, J M Sullivan, N C Wrinkle, Criticality for the Gehring link problem, Geom. Topol. 10 (2006) 2055

[5] J Cantarella, R B Kusner, J M Sullivan, On the minimum ropelength of knots and links, Invent. Math. 150 (2002) 257

[6] S S Chern, Curves and surfaces in Euclidean space, from: "Studies in Global Geometry and Analysis" (editor S S Chern), Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.) (1967) 16

[7] F H Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975) 247

[8] A Coward, J Hass, Topological and physical knot theory are distinct, to appear in Pacific J. Math.

[9] E Denne, Y Diao, J M Sullivan, Quadrisecants give new lower bounds for the ropelength of a knot, Geom. Topol. 10 (2006) 1

[10] J J Duistermaat, J A C Kolk, Distributions, Cornerstones, Birkhäuser (2010)

[11] O C Durumeric, Local structure of ideal knots, II: Constant curvature case, J. Knot Theory Ramifications 18 (2009) 1525

[12] H Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959) 418

[13] A Forsgren, P E Gill, M H Wright, Interior methods for nonlinear optimization, SIAM Rev. 44 (2002) 525

[14] O Gonzalez, J H Maddocks, Global curvature, thickness, and the ideal shapes of knots, Proc. Natl. Acad. Sci. USA 96 (1999) 4769

[15] D G Luenberger, Optimization by vector space methods, Wiley (1969)

[16] J H Maddocks, J B Keller, Ropes in equilibrium, SIAM J. Appl. Math. 47 (1987) 1185

[17] P Pieranski, S Przybyl, High resolution portrait of the ideal trefoil knot,

[18] H L Royden, Real analysis, Macmillan (1988)

[19] F Schuricht, H Von Der Mosel, Characterization of ideal knots, Calc. Var. Partial Differential Equations 19 (2004) 281

[20] E L Starostin, A constructive approach to modelling the tight shapes of some linked structures, Forma 18 (2003) 263

[21] P Strzelecki, M Szumańska, H Von Der Mosel, Regularizing and self-avoidance effects of integral Menger curvature, Ann. Sc. Norm. Super. Pisa Cl. Sci. 9 (2010) 145

[22] J M Sullivan, Curves of finite total curvature, from: "Discrete differential geometry" (editors A I Bobenko, P Schröder, J M Sullivan, G M Ziegler), Oberwolfach Semin. 38, Birkhäuser, Basel (2008) 137

[23] H J Sussmann, Shortest $3$–dimensional paths with a prescribed curvature bound, from: "Proc. of the 34th IEEE Conf. on Decision and Control", IEEE, New York (1995) 3306

Cité par Sources :