Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In the paper we define a “volume” for simplicial complexes of flag tetrahedra. This generalizes and unifies the classical volume of hyperbolic manifolds and the volume of CR tetrahedral complexes considered in Falbel [Q. J. Math. 62 (2011) 397–415], and Falbel and Wang [Asian J. Math. 17 (2013) 391–422]. We describe when this volume belongs to the Bloch group and more generally describe a variation formula in terms of boundary data. In doing so, we recover and generalize results of Neumann and Zagier [Topology 24 (1985) 307–332], Neumann [Topology ’90 (1992) 243–271] and Kabaya [Topology Appl. 154 (2007) 2656–2671]. Our approach is very related to the work of Fock and Goncharov [Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1–211; Ann. Sci. Éc. Norm. Supér. 42 (2009) 865–930].
Bergeron, Nicolas 1 ; Falbel, Elisha 2 ; Guilloux, Antonin 2
@article{GT_2014_18_4_a1, author = {Bergeron, Nicolas and Falbel, Elisha and Guilloux, Antonin}, title = {Tetrahedra of flags, volume and homology of {SL(3)}}, journal = {Geometry & topology}, pages = {1911--1971}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2014}, doi = {10.2140/gt.2014.18.1911}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1911/} }
TY - JOUR AU - Bergeron, Nicolas AU - Falbel, Elisha AU - Guilloux, Antonin TI - Tetrahedra of flags, volume and homology of SL(3) JO - Geometry & topology PY - 2014 SP - 1911 EP - 1971 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1911/ DO - 10.2140/gt.2014.18.1911 ID - GT_2014_18_4_a1 ER -
%0 Journal Article %A Bergeron, Nicolas %A Falbel, Elisha %A Guilloux, Antonin %T Tetrahedra of flags, volume and homology of SL(3) %J Geometry & topology %D 2014 %P 1911-1971 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1911/ %R 10.2140/gt.2014.18.1911 %F GT_2014_18_4_a1
Bergeron, Nicolas; Falbel, Elisha; Guilloux, Antonin. Tetrahedra of flags, volume and homology of SL(3). Geometry & topology, Tome 18 (2014) no. 4, pp. 1911-1971. doi : 10.2140/gt.2014.18.1911. http://geodesic.mathdoc.fr/articles/10.2140/gt.2014.18.1911/
[1] Local rigidity for $\mathrm{PGL}(3 , \mathbb{C})$ representations of $3$–manifold groups, Exp. Math. 22 (2013) 410
, , ,[2] Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996) 233
,[3] A Schläfli-type formula for convex cores of hyperbolic $3$–manifolds, J. Differential Geom. 50 (1998) 25
,[4] $K\!$–decompositions and $3d$ gauge theories,
, , ,[5] A spherical CR structure on the complement of the figure eight knot with discrete holonomy, J. Differential Geom. 79 (2008) 69
,[6] A volume function for spherical CR tetrahedra, Q. J. Math. 62 (2011) 397
,[7] Representations of fundamental groups of $3$–manifolds into $\mathrm{PGL}(3,\mathbb{C})$: Exact computations in low complexity,
, , ,[8] A combinatorial invariant for spherical CR structures, Asian J. Math. 17 (2013) 391
, ,[9] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006) 1
, ,[10] Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009) 865
, ,[11] Gluing equations for $\mathrm{PGL}(n,\mathbb{C})$–representations of $3$–manifolds,
, , ,[12] The complex volume of $\mathrm{SL}(n,\mathbb{C})$–representations of $3$–manifolds, (2013)
, , ,[13] Sur les triangulations des structures CR–sphériques, PhD thesis, Université Pierre et Marie Curie (2010)
,[14] An introduction to CR structures, Mathematical Surveys and Monographs 32, Amer. Math. Soc. (1990)
,[15] Pre-Bloch invariants of $3$–manifolds with boundary, Topology Appl. 154 (2007) 2656
,[16] Combinatorics of triangulations and the Chern–Simons invariant for hyperbolic $3$–manifolds, from: "Topology '90" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 243
,[17] Extended Bloch group and the Cheeger–Chern–Simons class, Geom. Topol. 8 (2004) 413
,[18] Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307
, ,[19] A personal account of the discovery of hyperbolic structures on some knot complements, Expo. Math. 31 (2013) 104
,[20] Homology of $\mathrm{GL}_{n}$, characteristic classes and Milnor $K\!$–theory, Trudy Mat. Inst. Steklov. 165 (1984) 188
,[21] The geometry and topology of $3$–manifolds, lecture notes, Princeton University (1978–1981)
,[22] The dilogarithm function, from: "Frontiers in number theory, physics, and geometry, II" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer, Berlin (2007) 3
,[23] The extended Bloch group and algebraic $K\!$–theory, (2010)
,Cité par Sources :